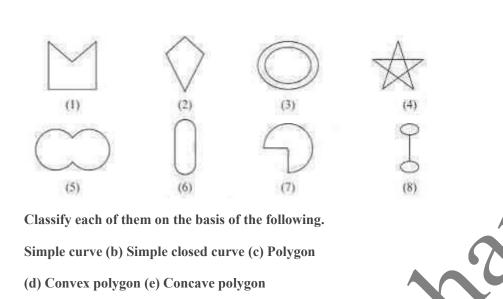


EXERCISE 3.1

PAGE NO: 41

1. Given here are some figures.

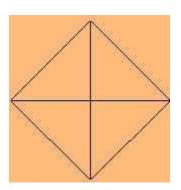


Solution:

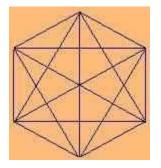
- a) Simple curve: 1, 2, 5, 6 and 7
- b) Simple closed curve: 1, 2, 5, 6 and 7
- c) Polygon: 1 and 2
- d) Convex polygon: 2
- e) Concave polygon: 1
- 2. How many diagonals does each of the following have?
- a) A convex quadrilateral (b) A regular hexagon (c) A triangle

Solution:

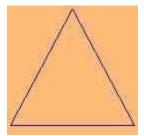
a) A convex quadrilateral.



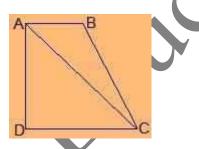
b) A regular hexagon: 9.



c) A triangle: 0



3. What is the sum of the measures of the angles of a convex quadrilateral? Will this property hold if the quadrilateral is not convex? (Make a non-convex quadrilateral and try!) Solution:



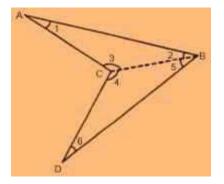
Let ABCD be a convex quadrilateral.

From the figure, we infer that the quadrilateral ABCD is formed by two triangles,

i.e. $\triangle ADC$ and $\triangle ABC$.

Since we know that sum of the interior angles of a triangle is 180°, the

sum of the measures of the angles is $180^{\circ} + 180^{\circ} = 360^{\circ}$



Let us take another quadrilateral ABCD which is not convex .

Join BC, such that it divides ABCD into two triangles \triangle ABC and \triangle BCD. In \triangle ABC

 $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$ (angle sum property of triangle)

In ΔBCD,

- $\angle 4 + \angle 5 + \angle 6 = 180^{\circ}$ (angle sum property of triangle)
- $\therefore, \angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 = 180^{\circ} + 180^{\circ}$
- $\Rightarrow \angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 = 360^{\circ}$
- $\Rightarrow \angle A + \angle B + \angle C + \angle D = 360^{\circ}$

Thus, this property holds if the quadrilateral is not convex.

4. Examine the table. (Each figure is divided into triangles and the sum of the angles deduced from that.)

Figure	\triangle	\bigcirc	\bigcirc	
Side	3	4	5	6
Angle sum	180°	$2 \times 180^{\circ}$ = (4 - 2) × 180°	$3 \times 180^{\circ}$ = (5 - 2) × 180°	$4 \times 180^{\circ}$ = (6-2) × 180°

What can you say about the angle sum of a convex polygon with number of sides? (a) 7 (b) 8 (c) 10 (d) n Solution:

7

EducationBharat001

The angle sum of a polygon having side $n = (n-2) \times 180^{\circ}$ a)

```
Here, n = 7
Thus, angle sum = (7-2) \times 180^\circ = 5 \times 180^\circ = 900^\circ
b) 8
Here, n = 8
Thus, angle sum = (8-2) \times 180^\circ = 6 \times 180^\circ = 1080^\circ
c) 10
Here, n = 10
Thus, angle sum = (10-2) \times 180^\circ = 8 \times 180^\circ = 1440^\circ
d) n
Here, n = n
Thus, angle sum = (n-2) \times 180^{\circ}
5. What is a regular polygon?
```

State the name of a regular polygon of

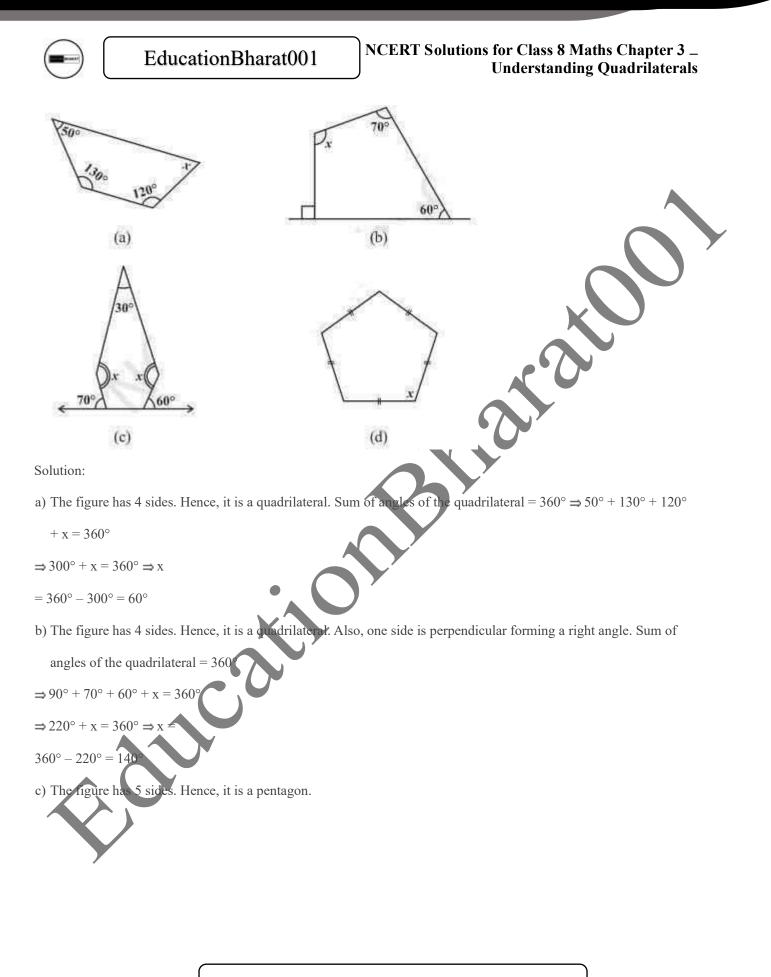
(i) 3 sides (ii) 4 sides (iii) 6 sides Solution

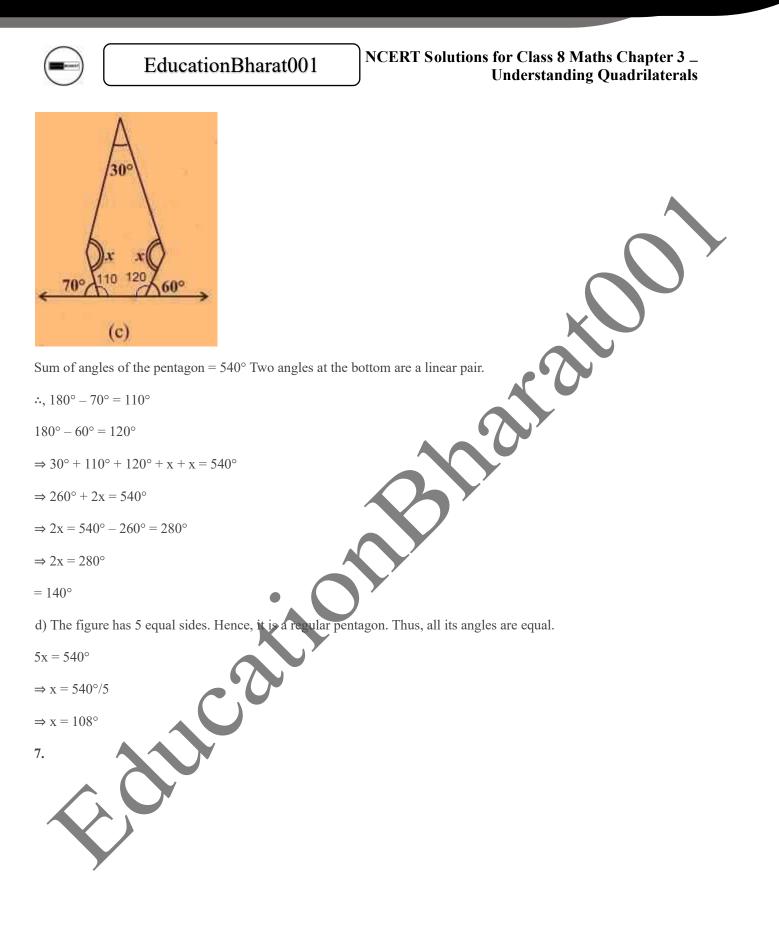
Regular polygon: A polygon having side of equal length and angles of equal measures is called a regular polygon. A regular polygon is both equilateral and equangular.

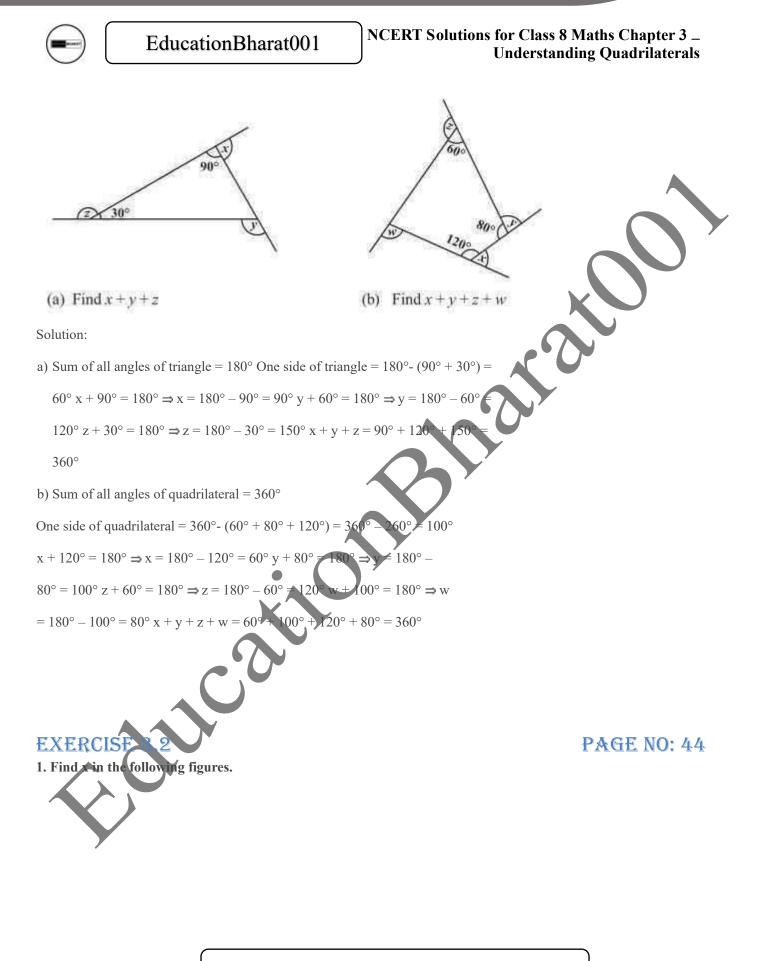
- (i) A regular polygon of 3 sides is called an equilateral triangle.
- (ii) A regular polygon of 4 sides is called a square.

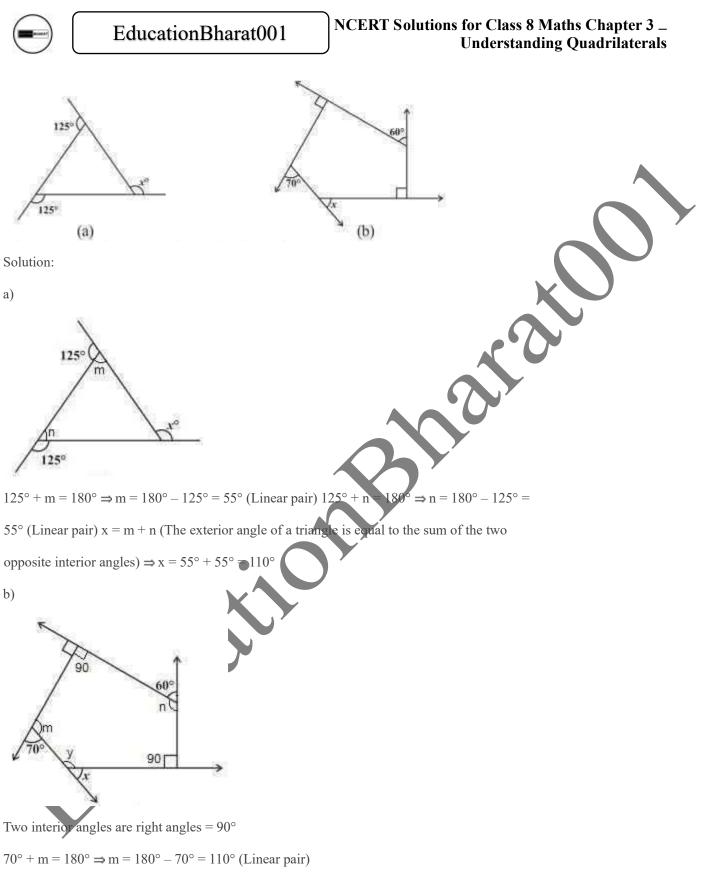
(iii) A regular polygon of 6 sides is called a regular hexagon.

6. Find the angle measure of x in the following figures.









 $60^{\circ} + n = 180^{\circ} \Rightarrow n = 180^{\circ} - 60^{\circ} = 120^{\circ}$ (Linear pair) The figure is having five sides and is a pentagon.

Thus, sum of the angles of a pentagon = 540°

 $\Rightarrow 90^{\circ} + 90^{\circ} + 110^{\circ} + 120^{\circ} + y = 540^{\circ}$

 $\Rightarrow 410^{\circ} + y = 540^{\circ} \Rightarrow y = 540^{\circ} - 410^{\circ} = 130^{\circ}$

 $x + y = 180^{\circ}$ (Linear pair) $\Rightarrow x + 130^{\circ} = 180^{\circ}$

 $\Rightarrow x = 180^{\circ} - 130^{\circ} = 50^{\circ}$

2. Find the measure of each exterior angle of a regular polygon of

(i) 9 sides (ii) 15 sides

Solution:

Sum of the angles of a regular polygon having side $n = (n-2) \times 180^{\circ}$

(i) Sum of the angles of a regular polygon having 9 sides = $(9-2) \times 180^\circ = 7 \times 180^\circ$

Each interior angle= $1260/9 = 140^{\circ}$

Each exterior angle = $180^{\circ} - 140^{\circ} = 40^{\circ}$

Or,

Each exterior angle = Sum of exterior angles/Number of angles = $360/9 = 40^{\circ}$

(ii) Sum of angles of a regular polygon having side $15 = (15-2) \times 180^{\circ}$

 $= 13 \times 180^{\circ} = 2340^{\circ}$

Each interior angle = $2340/15 = 156^{\circ}$

Each exterior angle = $180^{\circ} - 156^{\circ} = 7$

Or,

Each exterior angle = sum of exterior angles/Number of angles = $360/15 = 24^{\circ}$

3. How many sides does a regular polygon have if the measure of an exterior angle is 24°?

Solution.

Each exterior angle = sum of exterior angles/Number of angles

 $24^\circ = 360$ Number of sides \Rightarrow

Number of sides = 360/24 = 15

Thus, the regular polygon has 15 sides.

4. How many sides does a regular polygon have if each of its interior angles is 165°?

Solution:

Interior angle = 165°

Exterior angle = $180^{\circ} - 165^{\circ} = 15^{\circ}$

Number of sides = sum of exterior angles/exterior angles

 \Rightarrow Number of sides = 360/15 = 24

Thus, the regular polygon has 24 sides.

5. a) Is it possible to have a regular polygon with measure of each exterior angle as 22°2

b) Can it be an interior angle of a regular polygon? Why?

Solution:

a) Exterior angle = 22°

Number of sides = sum of exterior angles/ exterior angle

 \Rightarrow Number of sides = 360/22 = 16.36

No, we can't have a regular polygon with each exterior angle as 22° as it is not a divisor of 360. b) Interior angle = 22°

Exterior angle = $180^{\circ} - 22^{\circ} = 158^{\circ}$

No, we can't have a regular polygon with each exterior angle as 158° as it is not a divisor of 360.

6. a) What is the minimum interior angle possible for a regular polygon? Why?

b) What is the maximum exterior angle possible for a regular polygon?

Solution:

a) An equilateral triangle is the regular polygon (with 3 sides) having the least possible minimum interior angle because a regular polygon can be constructed with minimum 3 sides.

Since the sum of interior angles of a triangle = 180°

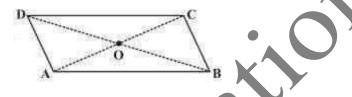
Each interior angle = $180/3 = 60^{\circ}$

b) An equilateral triangle is the regular polygon (with 3 sides) having the maximum exterior angle because the regular polygon with the least number of sides has the maximum exterior angle possible. Maximum exterior possible = $180 - 60^\circ = 120^\circ$

PAGE NO: 50 1.

EXERCISE 3.3

Given a parallelogram ABCD. Complete each statement along with the definition or property used.

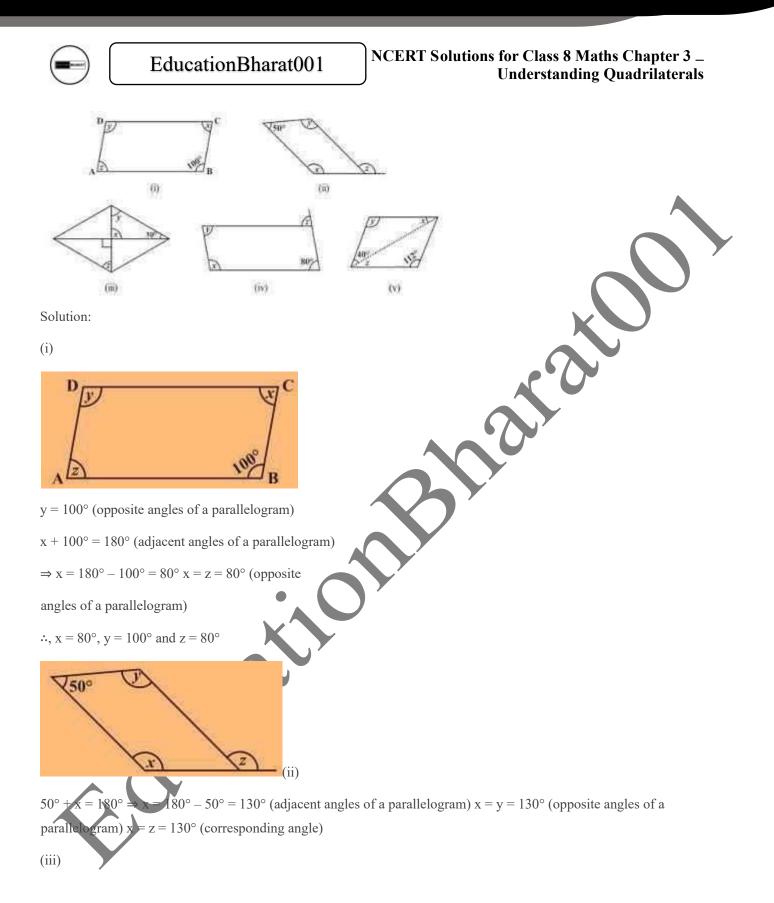


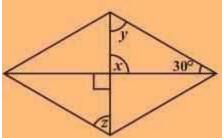
- (i) $AD = \dots$ (ii) $\angle DCB = \dots$
- (iii) OC = \dots (iv) m \angle DAB + m \angle CDA = \dots

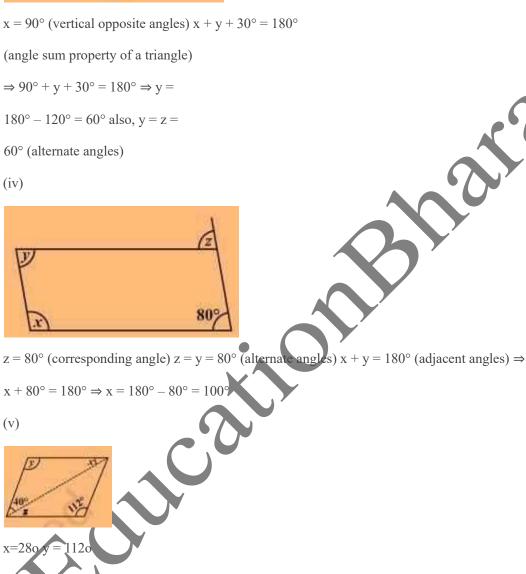
Solution:

- (i) AD = BC (Opposite sides of a parallelogram are equal)
- (ii) $\angle DCB = \angle DAB$ (Opposite angles of a parallelogram are equal)
- (iii) OC OA (Diagonals of a parallelogram are equal)
- (iv) m $\angle DAB + m \angle CDA = 180^{\circ}$

2. Consider the following parallelograms. Find the values of the unknown x, y, z







- 3. Can a quadrilateral ABCD be a parallelogram if (i) $\angle D + \angle B = 180^{\circ}$?
- (ii) AB = DC = 8 cm, AD = 4 cm and BC = 4.4 cm?

(iii) $\angle A = 70^{\circ} \text{ and } \angle C = 65^{\circ}$?

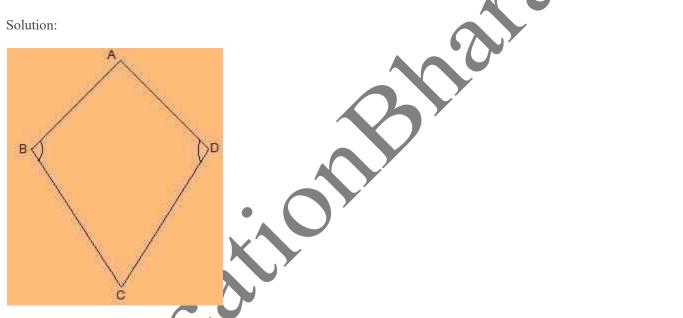
z = 28

Solution:

(i) Yes, a quadrilateral ABCD can be a parallelogram if $\angle D + \angle B = 180^{\circ}$ but it should also fulfil some conditions, which are:

- (a) The sum of the adjacent angles should be 180° .
- (b) Opposite angles must be equal.
- (ii) No, opposite sides should be of the same length. Here, $AD \neq BC$
- (iii) No, opposite angles should be of the same measures. $\angle A \neq \angle C$

4. Draw a rough figure of a quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure.



ABCD is a figure of quadrilateral that is not a parallelogram but has exactly two opposite angles, that is, $\angle B = \angle D$ of equal measure. It is not a parallelogram because $\angle A \neq \angle C$.

5. The measures of two adjacent angles of a parallelogram are in the ratio 3 : 2. Find the measure of each of the angles of the parallelogram.

Solution:

Let the measures of two adjacent angles $\angle A$ and $\angle B$ be 3x and 2x, respectively in

parallelogram ABCD. $\angle A + \angle B = 180^{\circ}$

 $\Rightarrow 3x + 2x = 180^{\circ}$

 $\Rightarrow 5x = 180^{\circ}$

 $\Rightarrow x = 36^{\circ}$

We know that opposite sides of a parallelogram are equal.

$$\angle A = \angle C = 3x = 3 \times 36^{\circ} = 108^{\circ}$$

 $\angle B = \angle D = 2x = 2 \times 36^{\circ} = 72^{\circ}$

6. Two adjacent angles of a parallelogram have equal measure. Find the measure of each of the angles of the parallelogram.

Solution:

Let ABCD be a parallelogram.

Sum of adjacent angles of a parallelogram = 180°

 $\angle A + \angle B = 180^{\circ}$

 $\Rightarrow 2 \angle A = 180^{\circ} \Rightarrow \angle A$

= 90° also, 90° +
$$\angle B$$

$$= 180^{\circ}$$

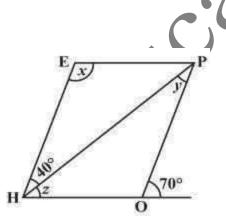
$$\Rightarrow \angle B = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

 $\angle A = \angle C = 90^{\circ}$

 $\angle B = \angle D = 90$

0

7. The adjacent figure HOPE is a parallelogram. Find the angle measures x, y and z. State the properties you use to find them.

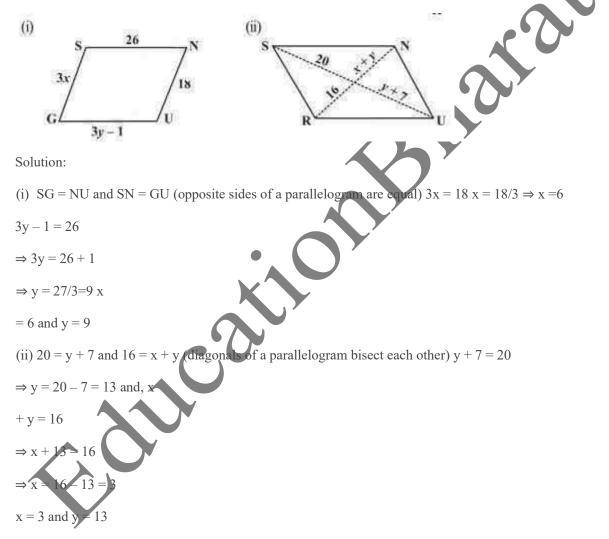


Solution:

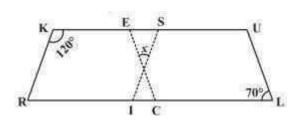
 $y = 40^{\circ}$ (alternate interior angle)

 $\angle P = 70^{\circ} \text{ (alternate interior angle)}$ $\angle P = \angle H = 70^{\circ} \text{ (opposite angles of a parallelogram) z}$ $= \angle H - 40^{\circ} = 70^{\circ} - 40^{\circ} = 30^{\circ}$ $\angle H + x = 180^{\circ}$ $\Rightarrow 70^{\circ} + x = 180^{\circ}$ $\Rightarrow x = 180^{\circ} - 70^{\circ} = 110^{\circ}$

8. The following figures GUNS and RUNS are parallelograms. Find x and y. (Lengths are in c



9. In the above figure both RISK and CLUE are parallelograms. Find the value of x.



Solution:

 $\angle K + \angle R = 180^{\circ}$ (adjacent angles of a parallelogram are supplementary)

$$\Rightarrow 120^{\circ} + \angle R = 180^{\circ} \Rightarrow \angle R = 180^{\circ} -$$

 $120^\circ = 60^\circ$ also, $\angle R = \angle SIL$

(corresponding angles)

 $\Rightarrow \angle SIL = 60^{\circ}$ also, $\angle ECR = \angle L = 70^{\circ}$ (corresponding angles) $x + 60^{\circ} + 70^{\circ} = 180^{\circ}$ (and

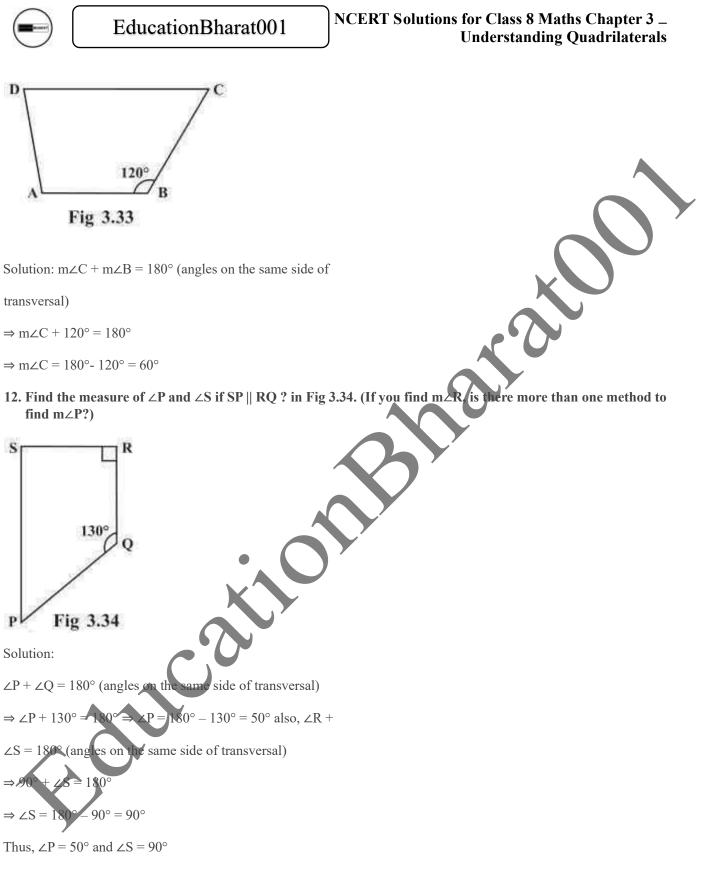
sum of a triangle) $\Rightarrow x + 130^\circ = 180^\circ$

 \Rightarrow x = 180° - 130° = 50°

10. Explain how this figure is a trapezium. Which of its two sides are parallel? (Fig 3.32)

Solution:

When a transversal line intersects two lines in such a way that the sum of the adjacent angles on the same side of transversal is 180°, then the lines are parallel to each other. Here, $\angle M + \angle L = 100^\circ + 80^\circ = 180^\circ$ Thus, MN || LK As the quadrilateral KLMN has one pair of parallel lines, it is a trapezium. MN and LK are parallel lines. **11. Find m\angle C in Fig 3.33 if AB || DC.**



Yes, there are more than one method to find $m \angle P$.

PQRS is a quadrilateral. Sum of measures of all angles is 360°.

Since, we know the measurement of $\angle Q$, $\angle R$ and $\angle S$.

- $\angle Q = 130^{\circ}, \angle R = 90^{\circ} \text{ and } \angle S = 90^{\circ}$
- $\angle P + 130^{\circ} + 90^{\circ} + 90^{\circ} = 360^{\circ}$
- $\Rightarrow \angle P + 310^\circ = 360^\circ$
- $\Rightarrow \angle P = 360^{\circ} 310^{\circ} = 50^{\circ}$

EXERCISE 3.4

- 1. State whether True or False.
- (a) All rectangles are squares.
- (b) All rhombuses are parallelograms.
- (c) All squares are rhombuses and also rectangles.
- (d) All squares are not parallelograms.
- (e) All kites are rhombuses.
- (f) All rhombuses are kites.
- (g) All parallelograms are trapeziums.
- (h) All squares are trapeziums.

Solution:

(a) False

Because all squares are rectangles but all rectangles are not square

- (b) True
- (c) True
- (d) False

Because all squares are parallelograms as opposite sides are parallel and opposite angles are equal.

(e) False.

Because, for example, the length of the sides of a kite are not of the same length.

- (f) True
- (g) True
- (h) True
- 2. Identify all the quadrilaterals that have. (a)

four sides of equal length (b) four right angles

Solution:

(a) Rhombus and square have all four sides of equal length.

https://educationbharat001.com/

PAGE NO: 55

(b) Square and rectangle have four right angles.

3. Explain how a square is

(i) a quadrilateral (ii) a parallelogram (iii) a rhombus (iv) a rectangle

Solution

- (i) Square is a quadrilateral because it has four sides.
- (ii) Square is a parallelogram because it's opposite sides are parallel and opposite angles are equal.
- (iii) Square is a rhombus because all the four sides are of equal length and diagonals bisect at right angles.

(iv)Square is a rectangle because each interior angle, of the square, is 90°

4. Name the quadrilaterals whose diagonals.

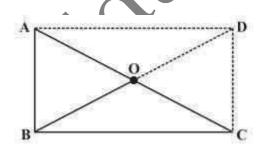
- (i) bisect each other (ii) are perpendicular bisectors of each other (iii) are equal Solution
- (i) Parallelogram, Rhombus, Square and Rectangle
- (ii) Rhombus and Square
- (iii)Rectangle and Square

5. Explain why a rectangle is a convex quadrilateral.

Solution

A rectangle is a convex quadritateral because both of its diagonals lie inside the rectangle.

6. ABC is a right-angled triangle and O is the mid-point of the side opposite to the right angle. Explain why O is equidistant from A, B and C. (The dotted lines are drawn additionally to help you).



Solution

AD and DC are drawn so that AD \parallel BC and AB \parallel DC

AD = BC and AB = DC

ABCD is a rectangle as opposite sides are equal and parallel to each other and all the interior angles are of 90°.

In a rectangle, diagonals are of equal length and also bisect each other.

C,1

Hence, AO = OC = BO = OD

Thus, O is equidistant from A, B and C.