

PAGE NO: 197

EXERCISE 12.1

1. Evaluate:

(i) 3⁻²(ii) (-4)⁻²(iii) (1/2)⁻⁵

Solution:

(i) $3^{-2} = (1/3)^2$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

(ii) $(-4)^{-2} = (1/-4)^2$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

(iii)
$$(1/2)^{-5} = (2/1)^{-5}$$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$
$$= 2^5$$

2. Simplify and express the result in power notation with a positive exponent:

- (i) $(-4)^4 \div (-4)^8$
- (ii) $(1/2^3)^2$
- (iii) -(3)⁴×(5/3)⁴
- (iv) (3-7÷3-10)×3-5
- (v) $2^{-3} \times (-7)^{-3}$

Solution:

(i)
$$(-4)^5 \div (-4)^8$$

 $= (-4)^{5/(-4)^8}$

https://educationbharat001.com/

EDUCATION BHARAT

UCATION BHARAT

$$= 5 \times 2^{0}$$

$$= 5 \times 1 = 5$$

$$\left[\because a^{-m} = \frac{1}{a^{m}} \right]_{(ii)(2^{-1} \times 4^{-1}) \div 2^{-2}}$$

$$= [(1/2) \times (1/4)] \div (1/4)$$

$$\left[\because a^{-m} = \frac{1}{a^{m}} \right]$$

$$= (1/2 \times 1/2^{2}) \div 1/4$$

$$= (1/2) \times (4)$$

$$= 1/2$$

$$(iii) (1/2)^{2} + (1/3)^{2} + (1/4)^{2}$$

$$= (2_{-1})_{2} + (3_{-1})_{2} + (4_{-1})_{2}$$

$$\left[\because a^{-m} = \frac{1}{a^{m}} \right]$$

$$= 2_{(1\times 2)} + 3_{(1\times 2)} + 4_{(1\times 2)}$$

$$\left[\because (a^{m})^{n} = a^{m \times n} \right]$$

$$= 2^{2} + 3^{2} + 4^{2}$$

$$= 4 + 9 + 16$$

$$= 29$$

EducationBharat001

155

and a state

 $=((4+1)/4)\times 2^{2}$

 $=(5/4)\times 2^{2}$

 $= (5/2^2) \times 2^2$

 $= 5 \times 2_{(2-2)}$

 $\begin{bmatrix} \because a^m \div a^n = a^{m-n} \end{bmatrix}$

NCERT Solutions for Class 8 Maths Chapter 12 _ **Exponents and Powers**

(iv) $(3_{-1}+4_{-1}+5_{-1})_0$			
= 1			
$\begin{bmatrix} \because a^{\circ} = 1 \end{bmatrix}$			
(v) $\{(-2/3)^{-2}\}^2 = (-2/3)^{-2\times 2}$			
$\left[\because (a^m)^n = a^{m \times n}\right]$			
= (-2/3)-4			
$=(-3/2)^4$			
$\left[\because a^{-m} = \frac{1}{a^m} \right]$			
= 81/16			
4. Evaluate:			
(i) (8 ⁻¹ ×5 ³)/2 ⁻⁴			
(ii) (5 ⁻¹ ×2 ⁻²)×6 ⁻¹	EDUCATION	BHARAT	
Solution:			
(i) $(8^{-1} \times 5^{3})/2^{-4}$			//
$\frac{8^{-1} \times 5^3}{2^{-4}} = \frac{\left(2^3\right)^{-1} \times 5^3}{2^{-4}} = \frac{2^{-3}}{2}$	×5 ³		1
$\left[\because (a^m)^n = a^{m \times n} \right]$			
$2^{-3-(-4)} \times 5^3 = 2^{-3+4} \times 5^3$ $\begin{bmatrix} \because a^m \div a^n = a^{m-n} \end{bmatrix}$			
$= 2 \times 125 = 250$			
(ii) (5 ⁻¹ ×2 ⁻²)×6 ⁻¹			

$$(5^{-1} \times 2^{-1}) \times 6^{-1} = \left(\frac{1}{5} \times \frac{1}{2}\right) \times \frac{1}{6}$$
$$\left[\because a^{-m} = \frac{1}{a^{m}} \right]$$

$$=(1/10)\times 1/6$$

= 1/60

5. Find the value of *m* for which $5^m \div 5^{-3} = 5^5$

Solution: 5^m

$$\div 5^{-3} = 5^{5}$$

 $5_{(m-(-3))} = 5_5$

$$\begin{bmatrix} \because a^m \div a^n = a^{m-n} \end{bmatrix}$$

 $5_{m+3} = 5_5$

Comparing exponents on both sides, we get EDUCATION BHARAT

m+3 = 5 m = 5-3 m = 2

6. Evaluate:

(i)

$$\left\{ \left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\}^{-1}$$

(ii)

$$\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-4}$$

Solution:

(i)

	EducationBharat001	NCERT Solutions for Class 8 Maths Chapter 12 – Exponents and Powers
$\left\{ \left(\frac{1}{3}\right)^{-1} - \frac{1}{3} \right\} = \left\{ \begin{array}{c} \frac{1}{3} \\ \frac$	$ \left(\frac{1}{4}\right)^{-1} = \left\{ \left(\frac{3}{1}\right)^1 - \left(\frac{4}{1}\right)^1 \right\} $ $= \frac{1}{a^m} $	
= 3-4	-	
= - 1		
(ii)		
$\left(\frac{5}{8}\right)^{-7} \times \left(\frac{3}{4}\right)^{-7} \left(\frac{a}{b}\right)^{-7}$	$\frac{8}{5} \int_{-4}^{-4} = \frac{5^{-7}}{8^{-7}} \times \frac{8^{-4}}{5^{-4}}$ $= \frac{a^{m}}{b^{m}} \end{bmatrix}$	
$=$ $5^{-7-(-4)} \times 8$ $[\because a^{m} \div a$ $=$ $5^{-7+4} \times 8^{-44}$ $= 5^{-3} \times 8^{3}$ 8^{3}	$a^{n} = a^{m-n}$] =	ION BHARAT
$\overline{5^3}$ $\left[\because a^{-m} = 512/125 \right]$	$\left[\frac{1}{a^m}\right]$	
7. Simplify	the following:	
(i)		
$\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t}$	$\frac{1}{t^{-8}} (t \neq 0)$	
(ii)		
$\frac{3^{-5} \times 10^{-5}}{5^{-7} \times 6}$ Solution:	×125 -5	

(i)	
$\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}}$	
$=\frac{5^2 \times t^{-4}}{5^{-3} \times 5 \times 2 \times t^{-8}}$	
$=\frac{5^{2-(-3)-1}\times t^{-4-(-8)}}{2}$	
$\left[\because a^m \div a^n = a^{m-n} \right]$	
$\frac{5^{2+3-1} \times t^{-4+8}}{2} = \frac{5^4 \times t^4}{2}$	
$\frac{625}{2}t^4$ =	
(ii)	
3-5×10-5×125 5-7×6-5 EDUCATION BHARAT	
$=\frac{3^{-5} \times (2 \times 5)^{-5} \times 5^{3}}{5^{-7} \times (2 \times 3)^{-5}}$	
$=\frac{3^{-5} \times 2^{-5} \times 5^{-5} \times 5^{3}}{5^{-7} \times 2^{-5} \times 3^{-5}}$	
$\left[\because (ab)^m = a^m b^m \right]$	
$\frac{3^{-5} \times 2^{-5} \times 5^{-5+3}}{5^{-7} \times 2^{-5} \times 3^{-5}} = \frac{3^{-5} \times 2^{-5} \times 5^{-2}}{5^{-7} \times 2^{-5} \times 3^{-5}}$	
$\begin{bmatrix} \because a^m \times a^n = a^{m+n} \end{bmatrix}$	
$ 3^{-5-(-5)} \times 2^{-5-(-5)} \times 5^{-2-(-7)} \left[\because a^{m} \div a^{n} = a^{m-n} \right] $	
=	

 $3^{-5+5} \times 2^{-5+5} \times 5^{-2+7}$ $3^{0} \times 2^{0} \times 5^{5}$ $= 1 \times 1 \times 3125$ $[\because a^{0} = 1]$

= 3125

EXERCISE 12.2

- 1. Express the following numbers in standard form.
- (i) 0.00000000085
- (ii) 0.000000000942
- (iii) 60200000000000000
- (iv) 0.0000000837
- (v) 3186000000

https://educationbharat001.com/

PAGE NO: 200

Solution:

- (i) $0.00000000085 = 0.0000000085 \times (10^{12}/10^{12}) = 8.5 \times 10^{-12}$
- (ii) $0.000000000942 = 0.000000000942 \times (10^{12}/10^{12}) = 9.42 \times 10^{-12}$
- (iii) $602000000000000 = 6020000000000 \times (10^{15}/10^{15}) = 6.02 \times 10^{15}$
- (iv) $0.0000000837 = 0.0000000837 \times (10^{9}/10^{9}) = 8.37 \times 10^{-9}$
- (v) $31860000000 = 31860000000 \times (10^{10}/10^{10}) = 3.186 \times 10^{10}$
- 2. Express the following numbers in the usual form.
- (i) 3.02×10^{-6}
- (ii) 4.5×10⁴
- (iii) 3×10-8
- (iv) 1.0001×10°
- (v) 5.8×10¹² (vi) 3.61492×10⁶

Solution:

- (i) $3.02 \times 10^{-6} = 3.02/10^{-6} = 0.00000302$ UCATION
- (ii) $4.5 \times 10^4 = 4.5 \times 10000 = 45000$
- (iii) $3 \times 10^{-8} = 3/10^8 = 0.00000003$
- (iv) $1.0001 \times 10^{\circ} = 1000100000$
- (vi) 3.61492×10⁶= 3.61492×1000000 = 3614920
- 3. Express the number appearing in the following statements in standard form.

(i) 1 micron is equal to 1/1000000 m.

- (ii) Charge of an electron is 0.000, 000, 000, 000, 000, 000, 16 coulomb.
- (iii) Size of bacteria is 0.0000005 m
- (iv) Size of a plant cell is 0.00001275 m (v) Thickness of a thick paper is 0.07 mm

Solution:

- (i) 1 micron = 1/1000000
- $= 1/10^{6}$
- $= 1 \times 10^{-6}$

- $= 0.0000000000000000016 \times 10^{19} / 10^{19}$
- $= 1.6 \times 10^{-19}$ coulomb
- (iii) Size of bacteria = 0.0000005
- $= 5/1000000 = 5/10^7 = 5 \times 10^{-7} \text{ m}$
- (iv) Size of a plant cell is 0.00001275 m
- $= 0.00001275 \times 10^{5}/10^{5}$
- $= 1.275 \times 10^{-5} m$
- (v) Thickness of a thick paper = 0.07 mm
- $0.07 \text{ mm} = 7/100 \text{ mm} = 7/10^2 = 7 \times 10^{-2} \text{ mm}$

4. In a stack, there are 5 books, each having a thickness of 20 mm and 5 paper sheets, each having a thickness of 0.016 mm. What is the total thickness of the stack?

Solution:	million and
Thickness of one book = 20 mm	BHARAT
Thickness of 5 books = $20 \times 5 = 100 \text{ mm}$	
Thickness of one paper = 0.016 mm	
Thickness of 5 papers = $0.016 \times 5 = 0.08$ mm	
Total thickness of a stack = $100+0.08 = 100.08$ mm	
$= 100.08 \times 10^2 / 10^2 \text{ mm}$	
$=1.0008 \times 10^{2}$ mm	