

EXERCISE 8.1

PAGE: 146

1. The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.

Solution:

Let the common ratio between the angles be x.

We know that the sum of the interior angles of the quadrilateral = 360°

Now,

 $3x+5x+9x+13x = 360^{\circ}$

 $\Rightarrow 30x = 360^{\circ} \Rightarrow x =$

 12°

, Angles of the quadrilateral are:

 $3x = 3 \times 12^\circ = 36^\circ$

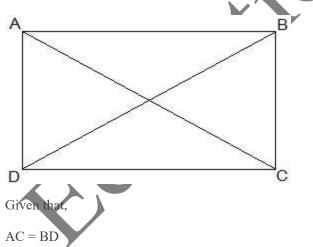
 $5x = 5 \times 12^\circ = 60^\circ$

 $9_{\rm X} = 9 \times 12^\circ = 108^\circ$

 $13x = 13 \times 12^{\circ} = 156^{\circ}$

2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Solution:



To show that ABCD is a rectangle if the diagonals of a parallelogram are equal

To show ABCD is a rectangle, we have to prove that one of its interior angles is right-angled. Proof,

In $\triangle ABC$ and $\triangle BAD$,

AB = BA (Common)

BC = AD (Opposite sides of a parallelogram are equal)

AC = BD (Given)

Therefore, $\triangle ABC \cong \triangle BAD$ [SSS congruency]

 $\angle A = \angle B$ [Corresponding parts of Congruent Triangles]

also,

 $\angle A + \angle B = 180^{\circ}$ (Sum of the angles on the same side of the transversal)

 $\Rightarrow 2 \angle A = 180^{\circ}$

 $\Rightarrow \angle A = 90^{\circ} = \angle B$

Therefore, ABCD is a rectangle.

Hence Proved.

3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Solution:

Ð

Let ABCD be a quadrilateral whose diagonals bisect each other at right angles.

and $\angle AOB = \angle BOC = \angle OCD = \angle ODA = 90^{\circ}$

To show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus, we have to prove that ABCD is a parallelogram and AB = BC = CD = AD

Proof,

In $\triangle AOB$ and $\triangle COB$,

OA = OC (Given)

 $\angle AOB = \angle COB$ (Opposite sides of a parallelogram are equal)

OB = OB (Common)

Therefore, $\triangle AOB \cong \triangle COB$ [SAS congruency]

Thus, AB = BC [CPCT]

Similarly, we can prove,

BC = CD

CD = AD

```
AD = AB
```

, AB = BC = CD = AD

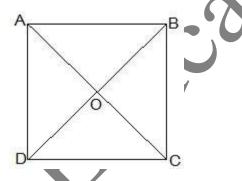
Opposite sides of a quadrilateral are equal. Hence, it is a parallelogram.

ABCD is rhombus as it is a parallelogram whose diagonals intersect at a right angle.

Hence Proved.

4. Show that the diagonals of a square are equal and bisect each other at right angles.

Solution:



Let ABCD be a square and its diagonals AC and BD intersect each other at O.

To show that,

AC = BDAO =

OC and $\angle AOB =$

90°

Proof,

In $\triangle ABC$ and $\triangle BAD$,

AB = BA (Common)

 $\angle ABC = \angle BAD = 90^{\circ}$

BC = AD (Given)

 $\triangle ABC \cong \triangle BAD [SAS congruency]$

Thus,

AC = BD [CPCT]

diagonals are equal.

Now,

In $\triangle AOB$ and $\triangle COD$,

 $\angle BAO = \angle DCO$ (Alternate interior angles)

 $\angle AOB = \angle COD$ (Vertically opposite) AB

= CD (Given)

, $\triangle AOB \cong \triangle COD [AAS congruency]$

Thus,

AO = CO [CPCT].

, Diagonal bisect each othe

Now,

In $\triangle AOB$ and $\triangle COB$,

OB = OB (Given)

AO = CO (diagonals are bisected)

AB = CB (Sides of the square)

, $\triangle AOB \cong \triangle COB$ [SSS congruency] also,

∠AOB = ∠COB

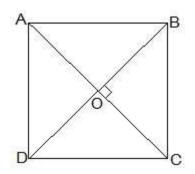
 $\angle AOB + \angle COB = 180^{\circ}$ (Linear pair)

Thus, $\angle AOB = \angle COB = 90^{\circ}$

, Diagonals bisect each other at right angles

5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Solution:



Given that,

Let ABCD be a quadrilateral and its diagonals AC and BD bisect each other at a right angle at O.

To prove that,

The Quadrilateral ABCD is a square.

Proof,

In $\triangle AOB$ and $\triangle COD$,

AO = CO (Diagonals bisect each other)

 $\angle AOB = \angle COD$ (Vertically opposite)

OB = OD (Diagonals bisect each other)

,
$$\triangle AOB \cong \triangle COD [SAS congruency]$$

Thus,

$$AB = CD [CPCT] - (i)$$

also,

 $\angle OAB = \angle OCD$ (Alternate interior angles)


```
\Rightarrow AB || CD
```

Now,

In $\triangle AOD$ and $\triangle COD$,

AO = CO (Diagonals bisect each other)

 $\angle AOD = \angle COD$ (Vertically opposite)

OD = OD (Common)

, $\triangle AOD \cong \triangle COD [SAS congruency]$

Thus,

AD = CD [CPCT] - (ii)

also,

AD = BC and AD = CD

 \Rightarrow AD = BC = CD = AB — (ii) also, \angle ADC =

 $\angle BCD$ [CPCT] and $\angle ADC + \angle BCD = 180^{\circ}$

(co-interior angles)

 $\Rightarrow 2 \angle ADC = 180^{\circ}$

 $\Rightarrow \angle ADC = 90^{\circ} - (iii)$

One of the interior angles is a right angle.

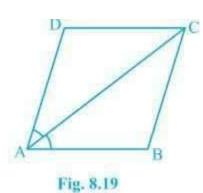
Thus, from (i), (ii) and (iii), given quadrilateral ABCD is a square.

Hence Proved.

6. Diagonal AC of a parallelogram ABCD bisects ∠A (see Fig. 8.19). Show that

(i) it bisects $\angle C$ also,

(ii) ABCD is a rhombus.



Solution:

(i) In \triangle ADC and \triangle CBA,

AD = CB (Opposite sides of a parallelogram) DC

= BA (Opposite sides of a parallelogram)

AC = CA (Common Side)

, $\triangle ADC \cong \triangle CBA$ [SSS congruency]

Thus,

 $\angle ACD = \angle CAB$ by CPCT and

 $\angle CAB = \angle CAD$ (Given)

 $\Rightarrow \angle ACD = \angle BCA$

Thus,

AC bisects ∠C also.

- (ii) $\angle ACD = \angle CAD$ (Proved above)
- \Rightarrow AD = CD (Opposite sides of equal angles of a triangle are equal)

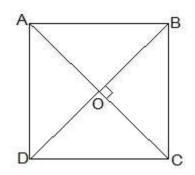
Also, AB = BC = CD = DA (Opposite sides of a parallelogram)

Thus,

ABCD is a rhombus.

7. ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.

Solution:



Given that,

ABCD is a rhombus.

AC and BD are its diagonals.

Proof,

AD = CD (Sides of a rhombus)

 $\angle DAC = \angle DCA$ (Angles opposite of equal sides of a triangle are equal) also

AB || CD

 $\Rightarrow \angle DAC = \angle BCA$ (Alternate interior angles)

⇒∠DCA = ∠BCA

, AC bisects $\angle C$.

Similarly,

We can prove that diagonal AC bisects 4

Following the same method,

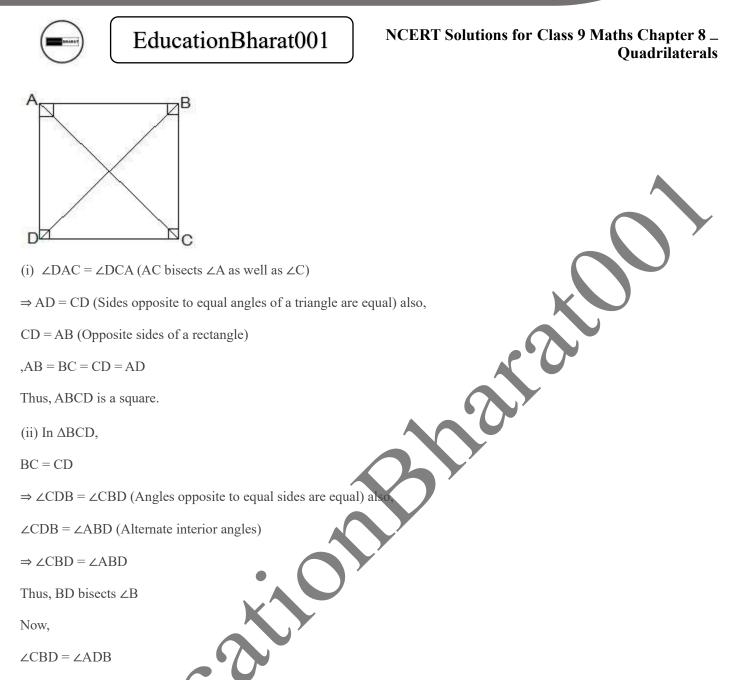
We can prove that the diagonal BD bisects $\angle B$ and $\angle D$.

8. ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that:

(i) ABCD is a square

(ii) Diagonal BD bisects $\angle B$ as well as $\angle D$.

Solution:



 $\Rightarrow \angle CDB = \angle ADB$

Thus, BD bisects ∠B as well

1/ D

9. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.20). Show that:

- (ii) AP = CQ
- (iii) $\Delta AQB \cong \Delta CPD$
- (iv) AQ = CP

(v) APCQ is a parallelogram

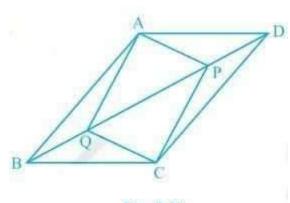


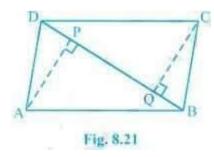
Fig. 8.20

Solution:

- (i) In \triangle APD and \triangle CQB,
- DP = BQ (Given)
- $\angle ADP = \angle CBQ$ (Alternate interior angles)
- AD = BC (Opposite sides of a parallelogram)
- Thus, $\triangle APD \cong \triangle CQB$ [SAS congruency]
- (ii) AP = CQ by CPCT as $\triangle APD \cong \triangle CQB$.
- (iii) In \triangle AQB and \triangle CPD,
- BQ = DP (Given)
- $\angle ABQ = \angle CDP$ (Alternate interior angles)
- AB = CD (Opposite sides of a parallelogram)
- Thus, $\triangle AQB \cong \triangle CPD$ [SAS congruency]
- (iv) As $\triangle AQB \cong \triangle CI$
- AQ = CP [CPCT]
- (v) From the questions (ii) and (iv), it is clear that APCQ has equal opposite sides and also has equal and opposite angles. , APCQ is a parallelogram.

10. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that

- (i) $\Delta APB \cong \Delta CQD$
- (ii) AP = CQ



Solution:

- (i) In \triangle APB and \triangle CQD,
- $\angle ABP = \angle CDQ$ (Alternate interior angles)
- $\angle APB = \angle CQD$ (= 90° as AP and CQ are perpendiculars)
- AB = CD (ABCD is a parallelogram),
- $\Delta APB \cong \Delta CQD [AAS congruency]$
- (ii) As $\triangle APB \cong \triangle CQD$.

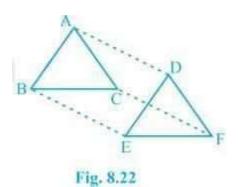
, AP = CQ [CPCT]

11. In ΔABC and ΔDEF, AB = DE, AB || ΦE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F, respectively (see Fig. 8.22).

Show that

- (i) quadrilateral ABED is a parallelogram
- (ii) quadrilateral BEFC is a parallelogram
- (iii) $AD \parallel CF$ and AD = Cl
- (iv) quadrilateral ACFD is a parallelogram

(v) AC = DF(vi) $\Delta ABC \cong ADEF$.



Solution:

(i) AB = DE and $AB \parallel DE$ (Given)

Two opposite sides of a quadrilateral are equal and parallel to each other.

Thus, quadrilateral ABED is a parallelogram (ii)

Again BC = EF and $BC \parallel EF$.

Thus, quadrilateral BEFC is a parallelogram.

(iii) Since ABED and BEFC are parallelograms.

 \Rightarrow AD = BE and BE = CF (Opposite sides of a parallelogram are eq

, AD = CF.

Also, AD || BE and BE || CF (Opposite sides of a parallelogram are parallel)

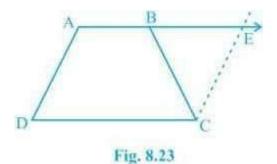
, AD || CF

- (iv) AD and CF are opposite sides of quadrilateral ACFD which are equal and parallel to each other. Thus, it is a parallelogram.
- (v) Since ACFD is a parallelogram
- AC \parallel DF and AC = DF
- (vi) In \triangle ABC and \triangle DE
- AB = DE (Given)BC = EF (Given)
- AC = DF (Opposite sides of a parallelogram)
- , $\triangle ABC \cong \triangle DEF$ [SSS congruency]

12. ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.23). Show that

- (i) $\angle A = \angle B$
- (ii) $\angle C = \angle D$
- (iii) $\triangle ABC \cong \triangle BAD$
- (iv) diagonal AC = diagonal BD

[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]



Solution:

To Construct: Draw a line through C parallel to DA intersecting AB produced at E.

(i) CE = AD (Opposite sides of a parallelogram)

AD = BC (Given)

, BC = CE

$$\Rightarrow \angle CBE = \angle CEB$$

also,

 $\angle A + \angle CBE = 180^{\circ}$ (Angles on the same side of transversal and $\angle CBE = \angle CEB$)

- $\angle B + \angle CBE = 180^{\circ}$ (As Linear pair)
- $\Rightarrow \angle A = \angle B$

(ii) $\angle A + \angle D = \angle B + \angle C = 180^{\circ}$ (Angles on the same side of transversal)

$$\Rightarrow \angle A \neq \angle D = \angle A + \angle C (\angle A = \angle B)$$
$$\Rightarrow \angle D = \angle C$$

(iii) In $\triangle ABC$ and $\triangle BAD$,

AB = AB (Common)

 $\angle DBA = \angle CBA$

NCERT Solutions for Class 9 Maths Chapter 8 – Quadrilaterals

AD = BC (Given)

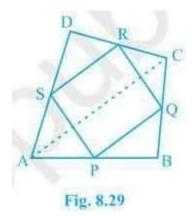
- , $\triangle ABC \cong \triangle BAD$ [SAS congruency]
- (iv) Diagonal AC = diagonal BD by CPCT as $\triangle ABC \cong \triangle BAD$.

EXERCISE 8.2

PAGE: 150

1. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that:

- (i) SR $\parallel \overrightarrow{AC}$ and SR = 1/2 AC
- (ii) PQ = SR
- (iii) PQRS is a parallelogram.



Solution:

(i) In ΔDAC ,

R is the mid point of DC and S is the mid point of DA.

Thus by mid point theorem, SR || AC and SR = $\frac{1}{2}$ AC

(ii) In \triangle BAC,

P is the mid point of AB and Q is the mid point of BC

Thus by mid point theorem, PQ || AC and PQ $= \frac{1}{2}$ AC also,

 $SR = \frac{1}{2}AC$

, PQ = SR

(iii) SR || AC

from question (i) and,

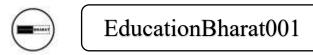
from (i) and (ii) also,

PQ = SR

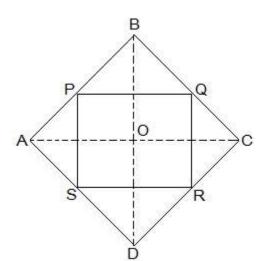
 \Rightarrow SR || PO

, PQRS is a parallelogram.

2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Show that the quadrilateral PQRS is a rectangle.



Solution:



Given in the question,

ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. To

Prove,

PQRS is a rectangle.

Construction, Join

AC and BD.

Proof:

In Δ DRS and Δ BPQ,

DS = BQ (Halves of the opposite sides of the rhombus)

 \angle SDR = \angle QBP (Opposite angles of the rhombus)

DR = BP (Halves of the opposite sides of the rhombus)

, $\Delta DRS \cong \Delta BPQ$ [SAS congruency]

RS = PO [CPC]- (i) In \triangle QCR and \triangle SAP,

RC = PA (Halves of the opposite sides of the rhombus)

 $\angle RCQ = \angle PAS$ (Opposite angles of the rhombus)

CQ = AS (Halves of the opposite sides of the rhombus)

, $\triangle QCR \cong \triangle SAP [SAS congruency]$

RQ = SP [CPCT] (ii)

Now,

In ∆CDB,

R and Q are the mid points of CD and BC, respectively.

 \Rightarrow QR \parallel BD

also,

P and S are the mid points of AD and AB, respectively.

 \Rightarrow PS || BD

 \Rightarrow QR || PS

, PQRS is a parallelogram.

also, $\angle PQR = 90^{\circ}$

Now,

In PQRS,

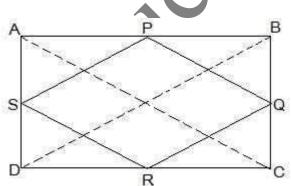
RS = PQ and RQ = SP from (i) and (ii)

 $\angle Q = 90^{\circ}$

, PQRS is a rectangle.

3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA, respectively. Show that the quadrilateral PQRS is a rhomous.

Solution:



Given in the question,

NCERT Solutions for Class 9 Maths Chapter 8 – Quadrilaterals

ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA, respectively. Construction,

Join AC and BD.

To Prove, PQRS is

a rhombus.

Proof:

In $\triangle ABC$

P and Q are the mid-points of AB and BC, respectively

, PQ || AC and PQ = $\frac{1}{2}$ AC (Midpoint theorem) — (i)

In ∆ADC,

SR \parallel AC and SR = $\frac{1}{2}$ AC (Midpoint theorem) — (ii)

So, $PQ \parallel SR$ and PQ = SR

As in quadrilateral PQRS one pair of opposite sides is equal and parallel to each other, so, it is a parallelogram.

, PS || QR and PS = QR (Opposite sides of parallelogram) \checkmark

Now,

In ΔBCD,

Q and R are mid points of side BC and CD, respectively

, QR || BD and QR = $\frac{1}{2}$ BD (Midpoint theorem) - (iv)

AC = BD (Diagonals of a rectangle are equal) — (v

From equations (i), (ii), (iii), (iv) and

PQ = QR = SR = PS

So, PQRS is a rhombus

Hence Proved

4. ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig. 8.30). Show that F is the mid-point of BC.

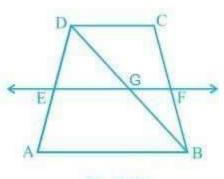


Fig. 8.30

Solution:

Given that,

ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD

To prove,

F is the mid-point of BC.

Proof,

BD intersected EF at G.

In ∆BAD,

E is the mid point of AD and also EG \parallel AB.

Thus, G is the mid point of BD (Converse of mid point theorem)

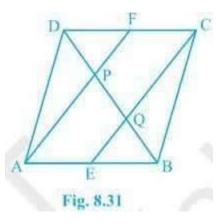
Now,

In ΔBDC,

G is the mid point of BD and also GF || AB || DC.

Thus, F is the mid point of BC (Converse of mid point theorem)

5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD, respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD.



Solution:

Given that,

ABCD is a parallelogram. E and F are the mid-points of sides AB and CD, respectively

To show,

AF and EC trisect the diagonal BD.

Proof,

ABCD is a parallelogram

, AB || CD also,

 $AE \parallel FC$

Now,

AB = CD (Opposite sides of parallelogram ABCD) \Rightarrow

 $\frac{1}{2}AB = \frac{1}{2}CD$

 \Rightarrow AE = FC (E and F are midpoints of side AB and CD)

AECF is a parallelogram (AE and CF are parallel and equal to each other)

AF || EC (Opposite sides of a parallelogram)

Now

In ΔDQC ,

F is mid point of side DC and FP \parallel CQ (as AF \parallel EC).

P is the mid-point of DQ (Converse of mid-point theorem)

 \Rightarrow DP = PQ — (i)

NCERT Solutions for Class 9 Maths Chapter 8 – Quadrilaterals

Similarly,

In ∆APB,

E is midpoint of side AB and EQ \parallel AP (as AF \parallel EC).

Q is the mid-point of PB (Converse of mid-point theorem)

 \Rightarrow PQ = QB — (ii)

From equations (i) and (i),

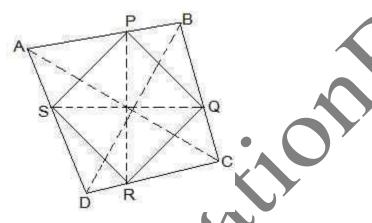
DP = PQ = BQ

Hence, the line segments AF and EC trisect the diagonal BD.

Hence Proved.

6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Solution:



Let ABCD be a quadrilateral and P, Q, R and S the mid points of AB, BC, CD and DA, respectively.

Now,

In ∆ACD,

R and S are the mid points of CD and DA, respectively.

Similarly we can show that,

PQ || AC,

, SR AC

PS || BD and

QR || BD

, PQRS is parallelogram.

PR and QS are the diagonals of the parallelogram PQRS. So, they will bisect each other.

7. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that (i) D is the mid-point of AC

(ii) MD \perp AC (iii) CM = MA = $\frac{1}{2}$ AB Solution:

