

Exercise 2.1

1. Which of the following expressions are polynomials in one variable, and which are not? State reasons for your answer.

(i) $4x^2-3x+7$

Solution:

The equation $4x^2-3x+7$ can be written as $4x^2-3x^1+7x^0$

Since *x* is the only variable in the given equation and the powers of x (i.e. 2, 1 and 0) are whole numbers, we can say that the expression $4x^2-3x+7$ is a polynomial in one variable.

(ii) $y^2 + \sqrt{2}$

Solution:

The equation $y^2 + \sqrt{2}$ can be written as $y^2 + \sqrt{2}y^0$

Since y is the only variable in the given equation and the powers of y (i.e., 2 and 0) are whole numbers, we can say that the expression $y^2+\sqrt{2}$ is a polynomial in one variable.

(iii) $3\sqrt{t+t}\sqrt{2}$

Solution:

The equation $3\sqrt{t+t}\sqrt{2}$ can be written as $3t^{1/2}+\sqrt{2t}$

Though *t* is the only variable in the given equation, the power of t(1.e., 1/2) is not a whole number. Hence, we can say that the expression $3\sqrt{t+t}\sqrt{2}$ is **not** a polynomial in one variable.

(iv) y+2/y

Solution:

```
The equation y+2/y can be written as y+2y^{-1}
```

Though y is the only variable in the given equation, the power of y (i.e., -1) is not a whole number. Hence, we can say that the expression y+2/y is not a polynomial in one variable.

(v) $x^{10}+y^3+t^{50}$

Solution:

Here, in the equation $x^{10}+y^3+t^{50}$

Though the powers, 10, 3, 50, are whole numbers, there are 3 variables used in the expression $x^{10}+y^3+t^{50}$.

Hence, it is not a polynomial in one variable.

2. Write the coefficients of x^2 in each of the following:

```
(i) 2 + x^2 + x
```

Solution:

The equation $2+x^2+x$ can be written as $2+(1)x^2+x$

https://educationbharat001.com/

Page: 32

We know that the coefficient is the number which multiplies the variable.

Here, the number that multiplies the variable x^2 is 1 Hence,

the coefficient of x^2 in $2+x^2+x$ is 1.

(ii)
$$2-x^2+x^3$$

Solution:

The equation $2-x^2+x^3$ can be written as $2+(-1)x^2+x^3$

We know that the coefficient is the number (along with its sign, i.e. - or +) which multiplies the variable

Here, the number that multiplies the variable x^2 is -1 Hence,

the coefficient of x^2 in $2-x^2+x^3$ is -1.

(iii) $(\pi/2)x^2+x$

Solution:

The equation $(\pi/2)x^2 + x$ can be written as $(\pi/2)x^2 + x$

We know that the coefficient is the number (along with its sign, i.e. -or +) which multiplies the variable.

Here, the number that multiplies the variable x^2 is $\pi/2$.

Hence, the coefficient of x^2 in $(\pi/2)x^2 + x$ is $\pi/2$.

(iii) $\sqrt{2x-1}$ Solution:

The equation $\sqrt{2x-1}$ can be written as $0x^2 + \sqrt{2x-1}$ [Since $0x^2$ is 0]

We know that the coefficient is the number (along with its sign, i.e. - or +) which multiplies the variable.

Here, the number that multiplies the variable x^2 is 0 Hence, the coefficient of x^2 in $\sqrt{2x-1}$ is 0.

3. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Solution:

Binomial of degree 35: A polynomial having two terms and the highest degree 35 is called a binomial of degree 35.

For example, $3x^{35}+$

Monomial of degree 100: A polynomial having one term and the highest degree 100 is called a monomial of degree 100.

For example, 4x

4. Write the degree of each of the following polynomials:

(i) $5x^3+4x^2+7x$ Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.

Here, $5x^3+4x^2+7x = 5x^3+4x^2+7x^1$

The powers of the variable x are: 3, 2, 1

The degree of $5x^{3}+4x^{2}+7x$ is 3, as 3 is the highest power of x in the equation.

(ii) 4–y²

Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.

Here, in $4-y^2$,

The power of the variable y is 2

The degree of $4-y^2$ is 2, as 2 is the highest power of y in the equation.

(iii) 5t– $\sqrt{7}$ Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.

Here, in $5t - \sqrt{7}$

The power of the variable t is: 1

The degree of $5t - \sqrt{7}$ is 1, as 1 is the highest power of y in the equation.

(iv) 3

Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.

Here, $3 = 3 \times 1 = 3 \times x^0$

The power of the variable here is: 0 Hence,

the degree of 3 is 0.

5. Classify the following as linear, quadratic and cubic polynomials:

Solution:

We know that,

Linear polynomial: A polynomial of degree one is called a linear polynomial.

Quadratic polynomial: A polynomial of degree two is called a quadratic polynomial.

Cubic polynomial: A polynomial of degree three is called a cubic polynomial.

(i) x^{2}

Solution: The highest power of $x^{2}+x$ is 2

The highest power of x

The degree is 2

Hence, $x^{2}+x$ is a quadratic polynomial

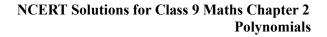
(ii) x-x³

Solution: The highest power of $x-x^3$ is 3 The degree is 3 Hence, $x-x^3$ is a cubic polynomial (iii) y+y²+4 Solution: The highest power of $y+y^2+4$ is 2 The degree is 2 Hence, $y+y^2+4$ is a quadratic polynomial (iv) 1+x Solution: The highest power of 1+x is 1 The degree is 1 Hence, 1+x is a linear polynomial. (v) 3t Solution: The highest power of 3t is 1 The degree is 1 Hence, 3t is a linear polynomial. (vi) r^2 Solution: The highest power of r^2 is 2 The degree is 2 Hence, r²is a quadratic polynomial (vii) $7x^3$ Solution: The highest power of $7x^3$ is 3 The degree is 3 Hence, $7x^3$ is a cubic polynomial. **Exercise 2.2** 1. Find the value of the polynomial (x)= $5x-4x^2+3$.

(i) x = 0

https://educationbharat001.com/

Page: 34



(ii) x = -1 $\mathbf{x} = \mathbf{2}$ Solution: (iii) Let $f(x) = 5x - 4x^2 + 3$ (i) When x = 0 f(0) $= 5(0)-4(0)^{2}+3$ = 3 (ii) When x = -1 $f(x) = 5x - 4x^2 + 3 f(-1)$ $= 5(-1)-4(-1)^2+3$ = -5 - 4 + 3= -6When x = 2(iii) $f(x) = 5x - 4x^2 + 3 f(2)$ $= 5(2) - 4(2)^{2} + 3 = 10 -$ 16 + 3= -32. Find p(0), p(1) and p(2) for each of the following polynomials: $p(y)=y^2-y+1$ (i) Solution: $p(y) = y^2 - y + 1$ $p(0) = (0)^2 - (0)^2 = 1$ $p(1) = (1)^2 - (1) + 1 = 1 p(2)$ $=(2)^{2}-(2)+1=3$ (ii) $p(t)=2+t+2t^{2}$ t³ Solution: p(t $2+t+2t^2-t^3$ $p(0) = 2 + 0 + 2(0)^2 - (0)^3 = 2$ $p(1) = 2+1+2(1)^2-(1)^3=2+1+2-1 = 4 p(2)$ $=2+2+2(2)^{2}-(2)^{3}=2+2+8-8=4$

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials

EducationBharat001

(iii) $p(x)=x^3$ Solution: $p(x) = x^3$ $p(0) = (0)^3 = 0$ $p(1) = (1)^3 = 1 p(2)$ $= (2)^3 = 8$ (iv) p(x) =(x-1)(x+1) Solution:

p(x) = (x-1)(x+1) p(0) = (0-1)(0+1) = (-1)(1) = -1 p(1) = (1-1)(1+1) = 0(2) = 0 p(2)= (2-1)(2+1) = 1(3) = 3

3. Verify whether the following are zeroes of the polynomial indicated against them.

(i) p(x)=3x+1, x=-1/3

Solution:

For, x = -1/3, p(x) = 3x+1

p(-1/3) = 3(-1/3)+1 = -1+1 = 0

-1/3 is a zero of p(x).

(ii) $p(x) = 5x - \pi, x = 4/5$

Solution:

For, x = 4/5, $p(x) = 5x - \pi$.

```
p(4/5) = 5(4/5) - \pi = 4 - \pi \pm 4/5
```

is not a zero of p(x).

(iii) $p(x) = x^2 - 1, x = x^2 - 1$

Solution:

For, x = 1, -1; p(x)

=
$$x^2 - 1$$

... $p(1) = 1^2 - 1 = 1 - 1 = 0 p(-1) = (-1)^2 - 1$

$$= 1 - 1 = 0$$

 $\pm 1, -1$ are zeros of p(x).

(iv)
$$p(x) = (x+1)(x-2), x = -1,$$

2 Solution:

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials

For, x = -1,2; p(x) =(x+1)(x-2) = p(-1) =(-1+1)(-1-2)= (0)(-3) = 0 p(2) = (2+1)(2-(2) = (3)(0) = 01 - 1, 2 are zeros of p(x). $p(x) = x^2$, x = 0 Solution: **(v)** For, $x = 0 p(x) = x^2 p(0) = 0^2 = 0$ $\therefore 0$ is a zero of p(x). (vi) p(x) = lx + m, x = -m/lSolution: For, x = -m/l; p(x) = lx + m = p(-lx) +m/l = l(-m/l) + m = -m + m = 0 = -m/lis a zero of p(x). $p(x) = 3x^2 - 1$, $x = -1/\sqrt{3}$, (vii) $2/\sqrt{3}$ Solution: For, $x = -1/\sqrt{3}$, $2/\sqrt{3}$; $p(x) = 3x^2 - 1 = p(-1/\sqrt{3}) = 3(-1/\sqrt{3}) = 3(-1/\sqrt{$ $1/\sqrt{3}^2 - 1 = 3(1/3) - 1 = 1 - 1 = 0 = p(2/\sqrt{3}) = 3(2/\sqrt{3})^2 - 1$ $3(4/3)-1 = 4-1 = 3 \neq 0 = -1/\sqrt{3}$ is a zero of p(x), but $2/\sqrt{3}$ is not a zero of p(x). p(x) = 2x+1, x = 1/2(viii) Solution: For, x = 1/2 p(x) = 2x+4p(1/2) = 2(1/2) + 1 = 1 + 11/2 is not a zero of p(x). 4. Find the zero of the polynomials in each of the following cases: (i) p(x) = x+5Solution: p(x) = x + 5 \Rightarrow x+5 = 0

$\Rightarrow x = -5$

 \therefore -5 is a zero polynomial of the polynomial p(x).

(ii) p(x) = x-5

Solution:

$$p(x) = x - 5$$

$$\Rightarrow x-5 = 0$$

$$\Rightarrow x = 5$$

 \therefore 5 is a zero polynomial of the polynomial p(x).

(iii) p(x) = 2x+5

Solution:

$$p(x) = 2x + 5$$

$$\Rightarrow 2x+5=0$$

$$\Rightarrow 2x = -5 \Rightarrow$$

$$x = -5/2$$

 $\therefore x = -5/2$ is a zero polynomial of the polynomial p(x).

(iv) p(x) = 3x-2

Solution:

$$p(x) = 3x - 2$$

$$\Rightarrow 3x-2=0$$

$$\Rightarrow 3x = 2 \Rightarrow x$$

$$= 2/3$$

 \therefore x = 2/3 is a zero polynomial of the polynomial p(x).

(v)
$$p(x) = 3x$$

Solution:

 $p(x) = 3x \neq$

$\Rightarrow x = 0$

 \therefore 0 is a zero polynomial of the polynomial p(x).

(vi) p(x) = ax, $a \neq 0$

https://educationbharat001.com/

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials

Solution:

 $p(x) = ax \Rightarrow$

ax = 0

 $\Rightarrow x = 0$

 \therefore x = 0 is a zero polynomial of the polynomial p(x).

(vii) p(x) =

 $cx+d, c \neq 0,$

c, d are

real

numbers.

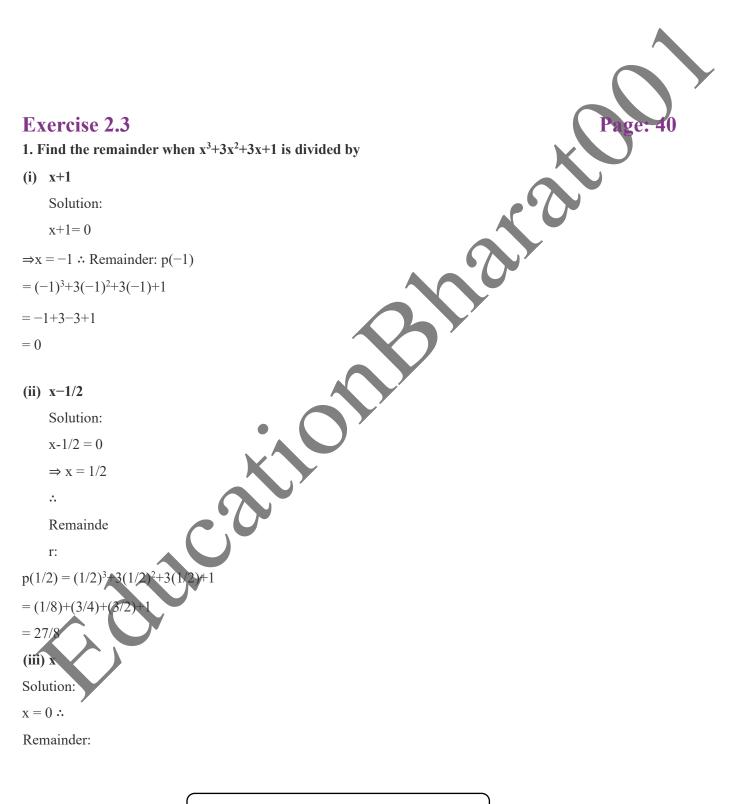
Solution:

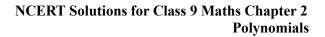
p(x) = cx +

 \Rightarrow cx+d =0

```
\Rightarrow x = -d/c
```

 \therefore x = -d/c is a zero polynomial of the polynomial p(x).





 $p(0) = (0)^3 + 3(0)^2 + 3(0) + 1 =$ 1 (iv) **x**+ π Solution: x+ π = 0 \Rightarrow x = $-\pi$ \therefore Remainder: p(0) $=(-\pi)^3+3(-\pi)^2+3(-\pi)+1$ $=-\pi^{3}+3\pi^{2}-3\pi+1$ (v) 5+2xSolution: 5 + 2x = 0 $\Rightarrow 2x = -5$ $\Rightarrow x = -5/2$ ∴ Remainder: $(-5/2)^3+3(-5/2)^2+3(-5/2)+1 = (-125/8)+(75/4)-(15/2)+1$ = -27/82. Find the remainder when x^3-ax^2+6x-a is divided by x Solution: Let $p(x) = x^3 - ax^2 + 6x - ax - a$ = 0 \therefore x = a Remainder: $p(a) = (a)^3 - a(a^2) + 6(a) - a$ $=a^{3}-a^{3}+6a-a=5a$ 3. Check whether 7+3x is a factor of $3x^3+7x$. Solution: 7 + 3x = 0 $\Rightarrow 3$ $\Rightarrow x =$ ∴ Remainder: $3(-7/3)^3+7(-7/3) = -(343/9)+(-49/3)$ =(-343-(49)3)/9=(-343-147)/9https://educationbharat001.com/

$= -490/9 \neq 0$

 \therefore 7+3x is not a factor of 3x³+7x

Exercise 2.4

1. Determine which of the following polynomials has (x + 1) a factor:

(i) x^3+x^2+x+1 Solution: Let $p(x) = x^3 + x^2 + x + 1$ The zero of x+1 is -1. [x+1 = 0 means x = -1] p(-1) $=(-1)^3+(-1)^2+(-1)+1$ = -1 + 1 - 1 + 1= 0. By factor theorem, x+1 is a factor of x^3+x^2+x+1 $x^4 + x^3 + x^2 + x + 1$ (ii) Solution: Let $p(x) = x^4 + x^3 + x^2 + x + 1$ The zero of x+1 is -1. [x+1=0 means x $=(-1)^4+(-1)^3+(-1)^2+(-1)+1$ = 1 - 1 + 1 - 1 + 1 $= 1 \neq 0$. By factor theorem, x+1 is not a factor of $x^4 + x^3 + x^2 + x + 1$ $x^4 + 3x^3 + 3x^2 + x +$ (iii) Solution:

Let $p(x) = x^4 + 3x^3 + 3x^2 + x + 1$ The

zero of x--1.

$$p(-1)=(-1)^4+3(-1)^3+3(-1)^2+(-1)+1$$

=1-3+3-1+1

 $=1 \neq 0$

. By factor theorem, x+1 is not a factor of $x^4+3x^3+3x^2+x+1$

(iv)
$$x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$$

Solution:

Let $p(x) = x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$ The

zero of x+1 is -1.

$$p(-1) = (-1)^{3} - (-1)^{2} - (2 + \sqrt{2})(-1) + \sqrt{2} = -1 - 1 + 2 + \sqrt{2} + \sqrt{2}$$

$$=2\sqrt{2}\neq 0$$

: By factor theorem, x+1 is not a factor of $x^3-x^2-(2+\sqrt{2})x + \sqrt{2}$

2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

```
(i) p(x) = 2x^3 + x^2 - 2x - 1, g(x) = x + 1 Solution: p(x) = 2x^3 + x^2 - 2x - 1, g(x) = x + 1 g(x) = 0
```

$$\Rightarrow$$
 x+1 = 0

 $\Rightarrow x = -1$

$$\therefore$$
 Zero of g(x) is -1. Now,

$$p(-1) = 2(-1)^3 + (-1)^2 - 2(-1) - 1$$

= -2 + 1 + 2 - 1

= 0

```
\therefore By factor theorem, g(x) is a factor of p(x).
```

```
(ii) p(x)=x^3+3x^2+3x+1, g(x)
```

```
= x+2 Solution: p(x) =
```

 $x^{3}+3x^{2}+3x+1$, g(x) = x+2 g(x) = 0

$$\Rightarrow$$
 x+2 = 0

 $\Rightarrow x = -2$

 \therefore Zero of g(x) is -2. Now

 $p(-2) = (-2)^3 + 3(-2)^2$

= -8+12-6+1

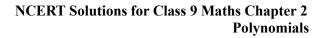
: By factor theorem, g(x) is not a factor of p(x).

(iii)
$$p(x)=x^3-4x^2+x+6$$
, $g(x) =$

(iii)
$$p(x) = x = 4x + x + 0, g(x) = -1$$

x–3 Solution: $p(x) = x^3 - 4x^2 + x + 6$,

g(x) = x - 3 g(x) = 0



 $\Rightarrow x-3 = 0$ $\Rightarrow x = 3$ $\therefore \text{ Zero of } g(x) \text{ is } 3.$ Now, p(3) = (3)³-4(3)²+(3)+6 = 27-36+3+6 = 0

 \therefore By factor theorem, g(x) is a factor of p(x).

3. Find the value of k, if x–1 is a factor of p(x) in each of the following cases:

(i)
$$p(x) = x^2 + x + k$$

Solution:

If x-1 is a factor of p(x), then p(1) = 0

By Factor Theorem

 $\Rightarrow (1)^2 + (1) + k = 0$

 $\Rightarrow 1+1+k=0$

 $\Rightarrow 2+k=0$

 \Rightarrow k = -2

```
(ii) p(x) = 2x^2 + kx + \sqrt{2}
```

Solution:

If x-1 is a factor of p(x), then p(1)

$$\Rightarrow 2(1)^2 + k(1) + \sqrt{2} = 0$$

 $\Rightarrow 2+k+\sqrt{2}=0$

 $\Rightarrow k = -(2+\sqrt{2}) \text{ (iii),}$ $p(\mathbf{x}) = \mathbf{k}\mathbf{x}^2 - \sqrt{2}\mathbf{x} + 1$

Solution:

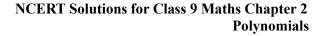
If x-1 is a factor of p(x), then p(1)=0

By Factor Theorem

 $\Rightarrow k(1)^2 - \sqrt{2}(1) + 1 = 0$

 \Rightarrow k = $\sqrt{2-1}$

(iv) p(x)=kx²-3x+k Solution:



If x-1 is a factor of p(x), then p(1) = 0By Factor Theorem \Rightarrow $k(1)^2 - 3(1) + k = 0 \Rightarrow k - 3 + k$ = 0 $\Rightarrow 2k-3 = 0 \Rightarrow$ k = 3/24. Factorise: (i) $12x^2 - 7x + 1$ Solution: Using the splitting the middle term method, We have to find a number whose sum = -7 and product = $1 \times 12 = 12$ We get -3 and -4 as the numbers $[-3+-4=-7 \text{ and } -3\times-4=12]$ $12x^2 - 7x + 1 = 12x^2 - 4x - 3x + 1$ =4x(3x-1)-1(3x-1)= (4x-1)(3x-1)(ii) $2x^2+7x+3$ Solution: Using the splitting the middle term method, We have to find a number whose sum = • and product = We get 6 and 1 as the numbers $[6+1=7 \text{ and } 6 \times 1=6]$ $2x^2 + 7x + 3 = 2x^2 + 6x + 1x + 3$

= 2x (x+3)+1(x+3)

=(2x+1)(x+3)

(iii) $6x^2+5x-6$ Solution:

Using the splitting the middle term method,

We have to find a number whose sum = 5 and product = $6 \times -6 = -36$

We get -4 and 9 as the numbers $[-4+9=5 \text{ and } -4\times9=-36]$

 $6x^2 + 5x - 6 = 6x^2 + 9x - 4x - 6$

= 3x(2x+3)-2(2x+3)

=(2x+3)(3x-2)

(iv) $3x^2 - x - 4$ Solution:

https://educationbharat001.com/

 $2 \times 3 = 6$

Using the splitting the middle term method, We have to find a number whose sum = -1 and product = $3 \times -4 = -12$ We get -4 and 3 as the numbers $[-4+3 = -1 \text{ and } -4 \times 3 = -12]$ $3x^2 - x - 4 = 3x^2 - 4x + 3x - 4$ = x(3x-4)+1(3x-4)=(3x-4)(x+1)5. Factorise: (i) x^3-2x^2-x+2 Solution: Let $p(x) = x^3 - 2x^2 - x + 2$ Factors of 2 are ± 1 and ± 2 Now, $p(x) = x^3 - 2x^2 - x + 2$ $p(-1) = (-1)^3 - 2(-1)^2 - (-1) + 2$ = -1 - 2 + 1 + 2= 0Therefore, (x+1) is the factor of p(x) $x^2 - 3x + 2$ x+1 $-2x^2 - x + 2$ $-3x^2 - x + 2$ $-3x^2 - 3x$ + * 2x + 22x + 20 Now, Dividend = Divisor \times Quotient + Remainder $(x+1)(x^2-3x+2)$ $=(x+1)(x^2-x-2x+2)$ = (x+1)(x(x-1)-2(x-1))= (x+1)(x-2)(x-2)

(ii) x³-3x²-9x-5 Solution:

Let $p(x) = x^3 - 3x^2 - 9x - 5$

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials

Solution:

So, (x+1) is :

 $1) = (-1)^3 + 1$

EducationBharat001

Factors of 5 are ± 1 and ± 5 By the trial method, we find that p(5) = 0 So, (x-5) is factor of p(x)Now, $p(x) = x^3 - 3x^2 - 9x - 3x^2 - 3x^2$ $5 p(5) = (5)^3 - 3(5)^2 -$ 9(5)-5 = 125-75-45-5 = 0

Therefore, (x

$$x^2 + 2x + 1$$

$$x-5 \qquad \begin{array}{c} x^{3} - 3x^{2} - 9x - 5 \\ x^{3} - 5x^{2} \\ - + \\ \hline \\ 2x^{2} - 9x - 5 \\ 2x^{2} - 10x \\ - + \\ \hline \\ x - 5 \\ x - 5 \\ \end{array}$$

$$= 125 - 75 - 45 - 5$$

$$= 0$$
Therefore, (x-5) is the factor of p(x)
$$x^{2^{2}} + 2x + 1$$

$$x^{5} = 5x^{2}$$

$$\frac{x^{2} - 5x^{2}}{2x^{2} - 9x - 5}$$

$$\frac{x^{2} - 5x^{2}}{2x^{2} - 10x}$$

$$\frac{x - 5}{x - 5}$$

$$\frac{x - 5}{0}$$
Now, Dividend = Divisor × Quotient + Remainder
$$(x - 5)(x^{2} + 2x + 1) = (x - 5)(x^{2} + x + x + 1)$$

$$= (x - 5)(x(x + 1) + 1(xi + 1))$$

$$= (x - 5)(x(x + 1) + 1(xi + 1))$$

$$= (x - 5)(x(x + 1) + 1(xi + 1))$$

$$= (x - 5)(x(x + 1) + 1(xi + 1))$$

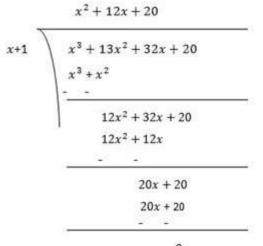
$$= (x - 5)(x + 1)(x + 1) (ii)$$

$$x^{3} + 13x^{2} + 32x + 20$$
Solution:
Let $p(x - x^{3} + 5x^{2} + 3x + 20)$
Factors of 20 ar; $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10$ and ± 20
By the truth method, we find that $p(-1) = 0$
So, $(x + 1)$ is factor of $p(x)$
Now, $p(x) = x^{3} + 13x^{2} + 32x + 20$ p(-
 $1) = (-1)^{3} + 13(-1)^{2} + 32(-1) + 20$

= -1 + 13 - 32 + 20

= 0

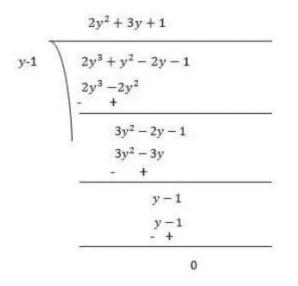
Therefore, (x+1) is the factor of p(x)



0

Now, Dividend = Divisor × Quotient +Remainder $(x+1)(x^2+12x+20) = (x+1)(x^2+2x+10x+20)$ = (x+1)x(x+2)+10(x+2) = (x+1)(x+2)(x+10)(iv) $2y^3+y^2-2y-1$ Solution: Let $p(y) = 2y^3+y^2-2y-1$ Factors = $2 \times (-1) = -2$ are ± 1 and ± 2 By the trial method, we find that p(1) = 0 So, (y-1) is factor of p(y)Now, $p(y) = 2y^3+y^2-2y-1$ $1 p(1) = 2(1)^3+(1)^2-1$ = 0

Therefore, (y-1) is the factor of p(y)



Now, Dividend = Divisor × Quotient + Remainder $(y-1)(2y^2+3y+1) = (y-1)(2y^2+2y+y+1)$

$$= (y-1)(2y(y+1)+1(y+1))$$

= (y-1)(2y+1)(y+1)

Exercise 2.5

Page: 48

1. Use suitable identities to find the following products:

(i) (x+4)(x+10)

Solution:

Using the identity, $(x+a)(x+b) = x^{2}+(a+b)x+ab$

[Here, a = 4 and b = 10] We get,

 $(x+4)(x+10) = x^2 + (4+10)x + (4 \times 10)$

 $= x^{2} + 14x + 40$

(ii) (x+8)(x -10)

Solution:

Using the identity, $(x+a)(x+b) = x^{2}+(a+b)x+ab$

[Here, a = 8 and b = -10] We get,

 $(x+8)(x-10) = x^2 + (8+(-10))x + (8\times(-10))$

 $= x^{2} + (8 - 10)x - 80$

 $= x^2 - 2x - 80$ (iii)

(3x+4)(3x-5)

Solution:

Using the identity, $(x+a)(x+b) = x^{2}+(a+b)x+ab$

[Here, x = 3x, a = 4 and b = -5] We get, $(3x+4)(3x-5) = (3x)^2 + [4+(-5)]3x+4 \times (-5)^2 + (-5)^$

$$=9x^{2}+3x(4-5)-20$$

 $=9x^{2}-3x-20$ (iv)

 $(y^2+3/2)(y^2-3/2)$

Solution:

Using the identity, $(x+y)(x-y) = x^2-y^2$

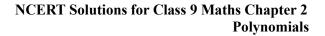
[Here,
$$x = y^2$$
 and $y = 3/2$] We get,

$$(y^2+3/2)(y^2-3/2) = (y^2)^2-(3/2)^2$$

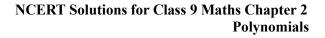
= $y^4-9/4$

2. Evaluate the following products without multiplying directly:

(i) 103×107 Solution: $103 \times 107 = (100 + 3) \times (100 + 7)$ Using identity, $[(x+a)(x+b) = x^2+(a+b)x+ab$ Here, x = 100 a = 3 b = 7 We get, $103 \times 107 = (100+3) \times (100+7)$ $=(100)^{2}+(3+7)100+(3\times7)$ = 10000 + 1000 + 21= 11021 95×96 (ii) Solution: $95 \times 96 = (100 - 5) \times (100 - 4)$ Using identity, $[(x-a)(x-b) = x^2-(a+b)x+ab$ Here, x = 100 a = -5 b = -4We get, $95 \times 96 = (100-5) \times (100-4)$ $=(100)^{2}+100(-5+(-4))+(-5\times-4)$ = 10000-900+20= 9120(iii) 104×96 Solution: $104 \times 96 = (100 + 4) \times (100 - 4)$ Using identity, $[(a+b)(a-b)=a^2-b^2]$ Here, a = 100 b = 4We get, $104 \times 96 = (100 + 4) \times (100 + 4)$ $=(100)^{2}-(4)^{2}$ = 10000-16 = 99843. Factorise the following using appropriate identities: $9x^2+6xy+y^2$ (i) Solution: $9x^{2}+6xy+y^{2}=(3x)^{2}+(2\times 3x\times y)+y^{2}$



Using identity, $x^2+2xy+y^2 = (x+y)^2$ Here, x = 3x y = y $9x^{2}+6xy+y^{2}=(3x)^{2}+(2\times 3x\times y)+y^{2}$ $=(3x+y)^{2}$ =(3x+y)(3x+y) $4y^2 - 4y + 1$ (ii) Solution: $4y^2 - 4y + 1 = (2y)^2 - (2 \times 2y \times 1) + 1$ Using identity, $x^2 - 2xy + y^2 = (x - y)^2$ Here, x = 2y y = 1 $4y^2 - 4y + 1 = (2y)^2 - (2 \times 2y \times 1) + 1^2$ $=(2y-1)^{2}$ =(2y-1)(2y-1) $x^2-y^2/100$ (iii) Solution: $x^2-y^2/100 = x^2-(y/10)^2$ Using identity, $x^2-y^2 = (x-y)(x+y)$ Here, $x = x y = y/10 x^2 - y^2/100 = x^2 - y^2/100$ $(y/10)^2$ = (x-y/10)(x+y/10)4. Expand each of the following using suitable identities: (i) $(x+2y+4z)^2$ (ii) $(2x-y+z)^2$ (iii) (-2x+3y+2z)(iv) (3a 7b-c)² (v) $(-2x+5y-3z)^2$ (vi) $((1/4)a-(1/2)b+1)^2$ Solution: (i) $(x+2y+4z)^2$ Using identity, $(x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx$ Here, x = x y = 2y z = 4z $(x+2y+4z)^2 = x^2+(2y)^2+(4z)^2+(2 \times x \times 2y)+(2 \times 2y \times 4z)+(2 \times 4z \times x)$ $= x^{2}+4y^{2}+16z^{2}+4xy+16yz+8xz$



(ii) $(2x-y+z)^2$ Using identity, $(x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx$ Here, x = 2x y = -y z = z $(2x-y+z)^2 = (2x)^2 + (-y)^2 + z^2 + (2 \times 2x \times -y) + (2 \times -y \times z) + (2 \times z \times 2x)$ $=4x^{2}+y^{2}+z^{2}-4xy-2yz+4xz$ (iii) $(-2x+3y+2z)^2$ Solution: Using identity, $(x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx$ Here, x = -2xy = 3yz = 2z $(-2x+3y+2z)^2 = (-2x)^2 + (3y)^2 + (2z)^2 + (2 \times -2x \times 3y) + (2 \times 3y \times 2z) + (2 \times 2z \times -2x)$ $=4x^{2}+9y^{2}+4z^{2}-12xy+12yz-8xz$ $(3a - 7b - c)^2$ (iv) Solution: Using identity $(x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx$ Here, x = 3a y = -7b z = -c $(3a - 7b - c)^2 = (3a)^2 + (-7b)^2 + (-c)^2 + (2 \times 3a \times -7b) + (2 \times 3a \times -7b)^2 + (-7b)^2 + ($ $c)+(2 \times - c \times 3a) = 9a^{2} + 49b^{2} + c^{2} - 42ab + 14bc - 6ca$ 7b × **(v)** $(-2x+5y-3z)^2$ Solution: Using identity, $(x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx$ Here, x = -2x y = 5y z = -3z $(-2x+5y-3z)^{2} = (-2x)^{2} + (5y) + (-3z)^{2} + (2 \times -2x \times 5y) + (2 \times 5y \times -3z) + (2 \times -3z \times -2x)$ $= 4x^2 + 25y^2 + 9z^2 - 20xy - 30yz + 12zx$ $((1/4)a-(1/2)b+1)^2$ (vi) Solution. Using identity, $(x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx$ Here, x = (1/4)a y = (-1/2)b z = 1

$$((1/4)a - (1/2)b + 1)^{2} = (\frac{1}{4}a)^{2} + (-\frac{1}{2}b)^{2} + (1)^{2} + (2 \times \frac{1}{4}a \times -\frac{1}{2}b) + (2 \times -\frac{1}{2}b \times 1) + (2 \times 1 \times \frac{1}{4}a)$$

$$= \frac{1}{16}a^{2} + \frac{1}{4}b^{2} + 1^{2} - \frac{2}{8}ab - \frac{2}{2}b + \frac{2}{4}a$$

$$= \frac{1}{16}a^{2} + \frac{1}{4}b^{2} + 1 - \frac{1}{4}ab - b + \frac{1}{2}a$$

5. Factorise:

- (i) $4x^2+9y^2+16z^2+12xy-24yz-16xz$
- (ii) $2x^2+y^2+8z^2-2\sqrt{2xy+4}\sqrt{2yz-8xz}$ Solution:
- (i) $4x^2+9y^2+16z^2+12xy-24yz-16xz$

Using identity, $(x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx$

We can say that, $x^2+y^2+z^2+2xy+2yz+2zx = (x+y+z)^2$

$$4x^{2}+9y^{2}+16z^{2}+12xy-24yz-16xz = (2x)^{2}+(3y)^{2}+(-4z)^{2}+(2\times 2x\times 3y)+(2\times 3y\times -4z)+(2\times -4z\times 2x)$$

$$=(2x+3y-4z)^{2}$$

=(2x+3y-4z)(2x+3y-4z)

(ii) $2x^2+y^2+8z^2-2\sqrt{2xy+4}\sqrt{2yz-8xz}$ Using identity, $(x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx$

We can say that, $x^2+y^2+z^2+2xy+2yz+2zx = (x+y+z)^2$

- $2x^{2}+y^{2}+8z^{2}-2\sqrt{2}xy+4\sqrt{2}yz-8xz$
- $= (-\sqrt{2x})^2 + (2\sqrt{2z})^2 + (2\sqrt{2x})^2 + (2\sqrt{2x}) + (2\sqrt{2x})^2 + (2\sqrt$
- $= (-\sqrt{2x} + y + 2\sqrt{2z})^2$
- $=(-\sqrt{2x+y+2\sqrt{2z}})(-\sqrt{2x+y+2\sqrt{2z}})$
- 6. Write the following cubes in expanded form:
- (i) $(2x+1)^3$
- (ii) $(2a-3b)^3$
- (iii) ((3/2)x+1)³
- (iv) $(x-(2/3)y)^3$ Solution:

(i)
$$(2x+1)^3$$

Using identity, $(x+y)^3 = x^3+y^3+3xy(x+y)$

 $(2x+1)^3 = (2x)^3 + 1^3 + (3 \times 2x \times 1)(2x+1)$

 $= 8x^3 + 1 + 6x(2x+1)$

 $= 8x^3 + 12x^2 + 6x + 1$

(ii)
$$(2a-3b)^3$$

Using identity,
$$(x-y)^3 = x^3-y^3-3xy(x-y)$$

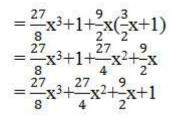
 $(2a-3b)^3 = (2a)^3 - (3b)^3 - (3 \times 2a \times 3b)(2a-3b)$

$$= 8a^{3}-27b^{3}-18ab(2a-3b)$$

 $= 8a^{3}-27b^{3}-36a^{2}b+54ab^{2}$

(iii) $((3/2)x+1)^3$

Using identity, $(x+y)^3 = x^3+y^3+3xy(x+y)$ $((3/2)x+1)^3 = ((3/2)x)^3+1^3+(3\times(3/2)x\times1)((3/2)x+1)$



(iv) $(x-(2/3)y)^3$

Using identity, $(x - y)^3 = x^3 - y^3 - 3xy(x - y)$

$$(x - \frac{2}{3}y)^{3} = (x)^{3} - (\frac{2}{3}y)^{3} - (3 \times x \times \frac{2}{3}y)(x - \frac{2}{3}y)$$
$$= (x)^{3} - \frac{8}{27}y^{3} - 2xy(x - \frac{2}{3}y)$$
$$= (x)^{3} - \frac{8}{27}y^{3} - 2x^{2}y + \frac{4}{3}xy^{2}$$

- 7. Evaluate the following using suitable identities:
- (i) (99)³
- (ii) $(102)^3$
- (iii) $(998)^3$ Solutions

(i) $(99)^3$

Solution:

We can write 99 as 100–1

Using identity,
$$(x - y)^3 = x^3 - y^3 - 3xy(x - y)$$

 $(99)^3 = (100 - 1)^3$

 $=(100)^{3}-1^{3}-(3\times100\times1)(100-1)$


```
= 1000000 - 1 - 300(100 - 1)
```

```
= 1000000 - 1 - 30000 + 300
```

```
= 970299
```

```
(ii) (102)^3
```

Solution:

We can write 102 as 100+2

Using identity, $(x+y)^3 = x^3+y^3+3xy(x+y)$

 $(100+2)^3 = (100)^3 + 2^3 + (3 \times 100 \times 2)(100+2)$

= 1000000 + 8 + 600(100 + 2)

= 1000000 + 8 + 60000 + 1200

= 1061208

(iii) (998)³

Solution:

We can write 99 as 1000–2

```
Using identity, (x-y)^3 = x^3-y^3-3xy(x-y)
```

 $(998)^3 = (1000-2)^3$

 $=(1000)^{3}-2^{3}-(3\times1000\times2)(1000-2)$

- = 100000000-8-6000(1000-2)
- = 100000000-8- 6000000+12000

= 994011992

- 8. Factorise each of the following.
- (i) $8a^3+b^3+12a^2b+6ab^2$
- (ii) $8a^3-b^3-12a^2b+6ab^2$

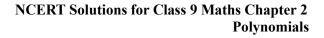
(iii) 27–125a³–135a +225a²

- (iv) 64a³-27b³-144a²b+108ab²
- (v) 27p³-(1/216)-(9/2) p²+(1/4)p Solutions:

(i) $8a^3+b^3+12a^2b+6ab^2$

Solution:

The expression, $8a^3+b^3+12a^2b+6ab^2$ can be written as $(2a)^3+b^3+3(2a)^2b+3(2a)(b)^2$ $8a^3+b^3+12a^2b+6ab^2 = (2a)^3+b^3+3(2a)^2b+3(2a)(b)^2$ $= (2a+b)^3$



= (2a+b)(2a+b)(2a+b)

Here, the identity, $(x + y)^3 = x^3 + y^3 + 3xy(x+y)$ is used.

(ii) $8a^3-b^3-12a^2b+6ab^2$

Solution:

The expression, $8a^3-b^3-12a^2b+6ab^2$ can be written as $(2a)^3-b^3-3(2a)^2b+3(2a)(b)^2$

 $8a^{3}-b^{3}-12a^{2}b+6ab^{2}=(2a)^{3}-b^{3}-3(2a)^{2}b+3(2a)(b)^{2}$

 $= (2a-b)^3$

= (2a-b)(2a-b)(2a-b)

Here, the identity, $(x-y)^3 = x^3-y^3-3xy(x-y)$ is used.

(iii) $27-125a^3-135a+225a^2$

Solution:

The expression, $27-125a^3-135a+225a^2$ can be written as $3^3-(5a)^3-3(3)^2(5a)+3(3)(5a)^2$

$$27-125a^{3}-135a+225a^{2} = 3^{3}-(5a)^{3}-3(3)^{2}(5a)+3(3)(5a)^{2}$$

 $=(3-5a)^3$

= (3-5a)(3-5a)(3-5a)

Here, the identity, $(x-y)^3 = x^3-y^3-3xy(x-y)$ is used.

(iv) $64a^3 - 27b^3 - 144a^2b + 108ab^2$

Solution:

The expression, $64a^3 - 27b^3 - 144a^2b + 108ab^2can$ be written as $(4a)^3 - (3b)^3 - 3(4a)^2(3b) + 3(4a)(3b)^2$

 $64a^{3}-27b^{3}-144a^{2}b+108ab^{2}=$ $(4a)^{3}-(3b)^{3}-3(4a)^{2}(3b)+3(4a)(3b)$

 $=(4a-3b)^3$

=(4a-3b)(4a-3b)(4a-3b)

Here, the identity, $(x - y)^3 = x^3 - y^3 - 3xy(x - y)$ is used.

(v) $27p^{3} - (1/216) - (9/2)$

 $p^2+(1/4)p$ Solution:

The expression, $27p^{3}$ -(1/216)-(9/2) p^{2} +(1/4)p can be written as

 $(3p)^{3}-(1/6)^{3}-(9/2) p^{2}+(1/4)p = (3p)^{3}-(1/6)^{3}-3(3p)(1/6)(3p-1/6)$

Using $(x - y)^3 = x^3 - y^3 - 3xy (x - y)$ $27p^{3}-(1/216)-(9/2)p^{2}+(1/4)p = (3p)^{3}-(1/6)^{3}-3(3p)(1/6)(3p-1/6)$ Taking x = 3p and y = 1/6 $=(3p-1/6)^3$ =(3p-1/6)(3p-1/6)(3p-1/6)9. Verify: (i) $x^3+y^3 = (x+y)(x^2-xy+y^2)$ (ii) $x^{3}-y^{3} = (x-y)(x^{2}+xy+y^{2})$ Solutions: (i) $x^3+y^3 = (x+y)(x^2-xy+y^2)$ We know that, $(x+y)^3 = x^3+y^3+3xy(x+y)$ \Rightarrow x³+y³ = (x+y)³-3xy(x+y) \Rightarrow x³+y³ = $(x+y)[(x+y)^2-3xy]$ Taking (x+y) common $\Rightarrow x^3+y^3 = (x+y)[(x^2+y^2+2xy)-3xy]$ $x^{3}+y^{3} = (x+y)(x^{2}+y^{2}-xy)$ (ii) $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$ We know that, $(x-y)^3 = x^3 - y^3 - 3xy(x-y)$ \Rightarrow x³-y³ = (x-y)³+3xy(x-y) \Rightarrow $x^{3}-y^{3} = (x-y)[(x-y)^{2}+3xy]$ Taking (x+y) common \Rightarrow x³-y³ = (x-y)[(x²+y²-2xy)+3xy] \Rightarrow $x^{3}+y^{3} = (x-y)(x^{2}+y^{2}+xy)$ 10. Factorise each of the following: (i) 27y³+125z³ (ii) 64m³–343n³ Solutions: (i) $27v^3+125z^3$ The expression, $27y^3+125z^3$ can be written as $(3y)^3+(5z)^3$ $27y^3 + 125z^3 = (3y)^3 + (5z)^3$ We know that, $x^{3}+y^{3} = (x+y)(x^{2}-xy+y^{2})$ $27y^3 + 125z^3 = (3y)^3 + (5z)^3$

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials

EducationBharat001

 $=(3y+5z)[(3y)^2-(3y)(5z)+(5z)^2]$ $=(3y+5z)(9y^2-15yz+25z^2)$ (ii) $64m^3 - 343n^3$ The expression, $64m^3 - 343n^3$ can be written as $(4m)^3 - (7n)^3$ $64m^3 - 343n^3 =$ $(4m)^3 - (7n)^3$ We know that, $x^{3}-y^{3} = (x-y)(x^{2}+xy+y^{2})$ $64m^3 - 343n^3 = (4m)^3 - (7n)^3$ $= (4m-7n)[(4m)^2+(4m)(7n)+(7n)^2]$ $= (4m-7n)(16m^2+28mn+49n^2)$ 11. Factorise: $27x^3+y^3+z^3-9xyz$. Solution: The expression $27x^3+y^3+z^3-9xyz$ can be written as $(3x)^3+y^3+z^3-3(3x)(y)(z)$ $27x^{3}+y^{3}+z^{3}-9xyz = (3x)^{3}+y^{3}+z^{3}-3(3x)(y)(z)$ We know that, $x^3+y^3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2-xy-yz+zx)$ $27x^{3}+y^{3}+z^{3}-9xyz = (3x)^{3}+y^{3}+z^{3}-3(3x)(y)(z)$ $=(3x+y+z)[(3x)^2+y^2+z^2-3xy-yz-3xz]$ $= (3x+y+z)(9x^2+y^2+z^2-3xy-yz-3xz)$ 12. Verify that: $x^{3}+y^{3}+z^{3}-3xyz = (1/2)(x+y+z)[(x-y)^{2}+(y-z)^{2}+(z-z)^$ Solution: We know that, $x^{3}+y^{3}+z^{3}-3xyz = (x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-xz)$ $\Rightarrow x^{3}+y^{3}+z^{3}-3xyz = (1/2)(x+y+z)[2(x^{2}+y^{2}+z^{2}-xy-yz-xz)]$ $= (1/2)(x+y+z)(2x^2+2y^2+2z^2-2xy-2yz-2xz)$ $= (1/2)(x+y+z)[(x^2+y^2-2xy)+(y^2+z^2-2yz)+(x^2+z^2-2xz)]$ $= (1/2)(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]$ 13. If x+y+z = 0, show that $x^3+y^3+z^3 = 3xyz$. Solution: We know that: $x^{3}+y^{3}+z^{3}-3xyz = (x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-xz)$ Now, according to the question, let (x+y+z) = 0,


```
Then, x^3+y^3+z^3-3xyz = (0)(x^2+y^2+z^2-xy-yz-xz)

\Rightarrow x^3+y^3+z^3-3xyz = 0 \Rightarrow x^3+y^3+z^3 = 3xyz
```

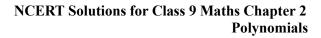
Hence Proved

14. Without actually calculating the cubes, find the value of each of the following:

(i) $(-12)^3 + (7)^3 + (5)^3$ **(ii)** $(28)^3 + (-15)^3 + (-13)^3$ Solution: (i) $(-12)^3 + (7)^3 + (5)^3$ Let a = -12b = 7 c = 5We know that if x+y+z = 0, then $x^3+y^3+z^3=3xyz$. Here, -12+7+5=0 $(-12)^3 + (7)^3 + (5)^3 = 3xyz$ $= 3 \times -12 \times 7 \times 5$ = -1260(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$ Solution: $(28)^3 + (-15)^3 + (-13)^3$ Let a = 28 b = -15 c= -13We know that if x+y+z = 0, then $x^{3}+$ Here, x+y+z = 28-15-13 = 0 $(28)^3 + (-15)^3 + (-13)^3 = 3xyz$ = 0+3(28)(-15)(-13)= 1638015. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given: (i) Area: 25a²-35a+12 (ii) +13v-12 Area: 35 Solution: (i) Area: 25a²-35a+12

Using the splitting the middle term method,

We have to find a number whose sum = -35 and product = $25 \times 12 = 300$ We get -15 and -20 as the numbers $[-15+-20=-35 \text{ and } -15\times-20=300]$ $25a^2 - 35a + 12 = 25a^2 - 15a - 20a + 12$ = 5a(5a-3)-4(5a-3)=(5a-4)(5a-3)Possible expression for length = 5a-4Possible expression for breadth = 5a - 3(ii) Area: 35y²+13y-12 Using the splitting the middle term method, We have to find a number whose sum = 13 and product = $35 \times -12 = 420$ We get -15 and 28 as the numbers $[-15+28 = 13 \text{ and } -15 \times 28 = 420]$ $35y^2 + 13y - 12 = 35y^2 - 15y + 28y - 12$ = 5y(7y-3)+4(7y-3)=(5y+4)(7y-3)Possible expression for length = (5y+4)Possible expression for breadth = (7y-3)16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below? (i) Volume: $3x^2 - 12x$ (ii) Volume: 12ky²+8ky–20k Solution: (i) Volume: $3x^2 - 12x$ $3x^2-12x$ can be written as 3x(x-4) by taking 3x out of both the terms. Possible expression for length = 3Possible expression for breadth = x Possible expression for height = (ii) Volume: 12ky2+8ky_20k $12ky^2+8ky-20k$ can be written as $4k(3y^2+2y-5)$ by taking 4k out of both the terms. $12ky^2+8ky-20k = 4k(3y^2+2y-5)$ [Here, $3y^2+2y-5$ can be written as $3y^2+5y-3y-5$ using splitting the middle term method.] = $4k(3y^2+5y-3y-5)$ = 4k[y(3y+5)-1(3y+5)]



= 4k(3y+5)(y-1)

Possible expression for length = 4kPossible expression for breadth = (3y + 5)

Possible expression for height = (y - 1)