

NCERT Solutions for Class 9 Maths Chapter 10 - Circles

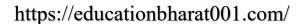
EXERCI se: 10.1 (Page No: 171) 1. Fill in the blanks. (i) The centre of a circle lies in of the circle. (exterior/interior) (ii) A point whose distance from the centre of a circle is greater than its radius lies in (exterior/interior) (iii) The longest chord of a circle is a ______ of the circle. (iv) An arc is a _____ when its ends are the ends of a diameter. (v) Segment of a circle is the region between an arc and of the circle. (vi) A circle divides the plane, on which it lies, in **Solution:** (i) The centre of a circle lies in **interior** of the circle. (ii) A point, whose distance from the centre of a circle is greater than its radius lies in exterior of the circle. (iii) The longest chord of a circle is a **diameter** of the circle. (iv) An arc is a semicircle when its ends are the ends of a mameter. (v) Segment of a circle is the region between an arc and chard of the circle. (vi) A circle divides the plane, on which it lies, in 3 (three) parts. 2. Write True or False. Give reasons for your solutions. (i) Line segment joining the centre to any point on the circle is a radius of the circle. (ii) A circle has only a finite number of equal chords. (iii) If a circle is divided into three equal arcs, each is a major arc. (iv) A chord of a circle, which is twice as long as its radius, is the diameter of the circle. (v) Sector is the region between the chord and its corresponding arc. (vi) A circle is a plane figure. **Solution:** (i) **True.** Any line segment drawn from the centre of the circle to any point on it is the radius of the circle and will be of equal length.

https://educationbharat001.com/

(ii) False. There can be infinite numbers of equal chords in a circle.

NCERT Solutions for Class 9 Maths Chapter 10 - Circles

- (iii) **False.** For unequal arcs, there can be major and minor arcs. So, equal arcs on a circle cannot be said to be major arcs or minor arcs.
- (iv) **True.** Any chord whose length is twice as long as the radius of the circle always passes through the centre of the circle, and thus, it is known as the diameter of the circle.
- (v) False. A sector is a region of a circle between the arc and the two radii of the circle.
- (vi) **True.** A circle is a 2d figure, and it can be drawn on a plane.



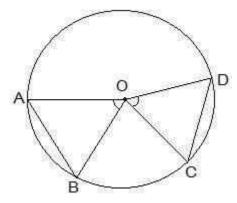
NCERT Solutions for Class 9 Maths Chapter 10 - Circles

SE: 10.2 (PAGE NO: 173)

1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.

Solution:

To recall, a circle is a collection of points whose every point is equidistant from its centre. So, two circles can congruent only when the distance of every point of both circles is equal from the centre.



For the second part of the question, it is given that AB = CD, i.e., two equal chords.

Now, it is to be proven that angle AOB is equal to angle COD.

Proof:

Consider the triangles $\triangle AOB$ and $\triangle COD$.

OA = OC and OB = OD (Since they are the radii of the circle.)

AB = CD (As given in the question.)

So, by SSS congruency, $\triangle AOP \triangleq \triangle COD$

∴ By CPCT, we have,

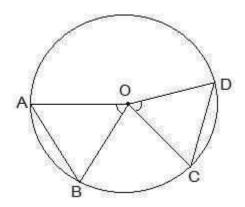
 $\angle AOB = \angle COD$ (Hence, proved).

2. Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.

Solution:

Consider the following diagram.

NCERT Solutions for Class 9 Maths Chapter 10 - Circles



Here, it is given that $\angle AOB = \angle COD$, i.e., they are equal angles.

Now, we will have to prove that the line segments AB and CD are equal, i.e., AB = CD.

Proof:

In triangles AOB and COD,

 $\angle AOB = \angle COD$ (As given in the question.)

OA = OC and OB = OD (These are the radii of the circle.)

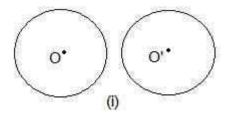
So, by SAS congruency, $\triangle AOB \cong \triangle COD$

∴ By the rule of CPCT, we have,

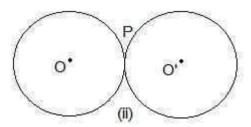
AB = CD (Hence, proved.)

SE: 10.3 (PAGE NO: 176)

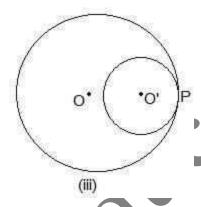
1. Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?



In these two circles, no point is common.

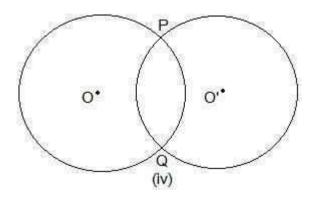


Here, only one point, 'P', is common.

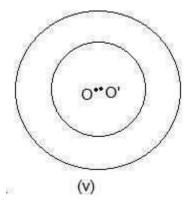


Even here, P is the common point.

NCERT Solutions for Class 9 Maths Chapter 10 - Circles

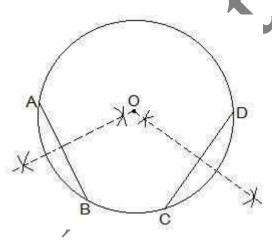


Here, two points are common, which are P and Q.



No point is common in the above circle.

2. Suppose you are given a circle. Give a construction to find its centre.



The construction steps to find the centre of the circle is:

Step I: Draw a circle first.

Step II: Draw 2 chords, AB and CD, in the circle.

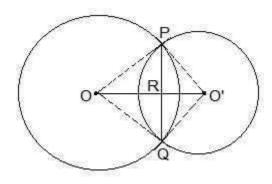
NCERT Solutions for Class 9 Maths Chapter 10 - Circles

Step III: Draw the perpendicular bisectors of AB and CD.

Step IV: Connect the two perpendicular bisectors at a point. This intersection point of the two perpendicular bisectors is the centre of the circle.

3. If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the combon chord.

Solution:



It is given that two circles intersect each other at P and Q.

To prove:

OO' is perpendicular bisector of PQ.

(i)
$$PR = RQ$$

(ii)
$$\angle PRO = \angle PRO' = \angle QRO = \angle QRO' = 90$$

Proof:

In triangles $\Delta POO'$ and $\Delta QOO'$

$$OP = OQ$$
 and $O'P = O'Q$ (Since they are also the radii.)

So, it can be said that $POO' \cong \Delta QOO'$ (SSS Congruence rule)

Even trian, $\sim \Delta POR$ and ΔQOR are similar by SAS congruency.

$$OP = OQ (Radii)$$

$$\angle POR = \angle QOR \text{ (As } \angle POO' = \angle QOO')$$

NCERT Solutions for Class 9 Maths Chapter 10 - Circles

OR = OR (Common arm)

So, $\triangle OPO' \cong \triangle OQO'$ (SAS Congruence rule)

 \therefore PR = QR and \angle PRO = \angle QRO (c.p.c.t) (ii)

As PQ is a line

 $\angle PRO + \angle QRO = 180^{\circ}$

 $\angle PRO + \angle PRO = 180^{\circ} \text{ (Using (ii))}$

 $2\angle PRO = 180^{\circ}$

 $\angle PRO = 90^{\circ}$

So $\angle QRO = \angle PRO = 90^{\circ}$

Here,

 $\angle PRO' = \angle QRO = 90^{\circ}$ and $\angle QRO' = \angle PRO = 90^{\circ}$ (Vertically opposite gales

 $\angle PRO = \angle QRO = \angle PRO' = \angle QRO' = 90^{\circ}$

So, OO' is the perpendicular bisector of PQ.

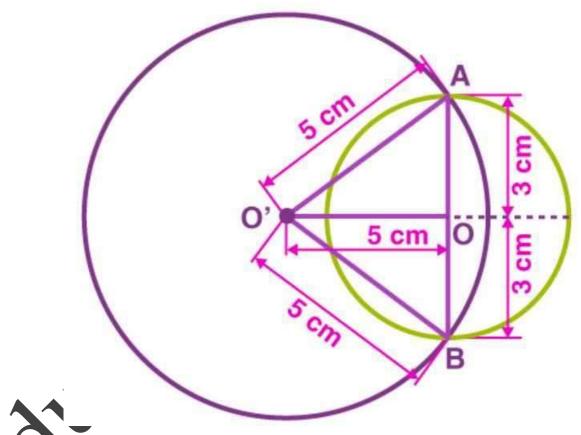
EXERCISE: 10.4

(PAGE NO: 179)

1. Two circles of radii 5 cm and 3 cm intersect at two points, and the distance between their centres is 4 cm. Find the length of the common chord.

Solution:

The perpendicular bisector of the common chord passes through the centres of both circles.



As the cases it tersecut two points, we can construct the above figure.

Conser B as he common chord and O and O' as the centres of the circles.

O'A = 5 cm

OA = 3 cm

OO' = 4 cm [Distance between centres is 4 cm.]

NCERT Solutions for Class 9 Maths Chapter 10 - Circles

As the radius of the bigger circle is more than the distance between the two centres, we know that the centre of the smaller circle lies inside the bigger circle.

The perpendicular bisector of AB is OO'.

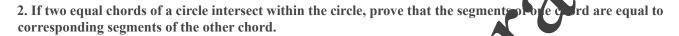
$$OA = OB = 3 \text{ cm}$$

As O is the midpoint of AB

$$AB = 3 \text{ cm} + 3 \text{ cm} = 6 \text{ cm}$$

The length of the common chord is 6 cm.

It is clear that the common chord is the diameter of the smaller circle.



Solution:

Let AB and CD be two equal cords (i.e., AB = CD). In the above question at a given that AB and CD intersect at a point, say, E.

It is now to be proven that the line segments AE = DE and C = BE

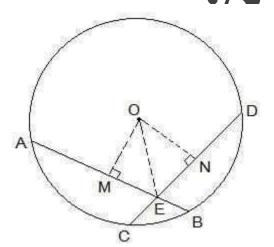
Construction Steps

Step 1: From the centre of the circle, draw a perpendicular to Ab, i.e., OM \perp AB.

Step 2: Similarly, draw ON \perp CD.

Step 3: Join OE.

Now, the diagram is as follows:



NCERT Solutions for Class 9 Maths Chapter 10 - Circles

Proof:

From the diagram, it is seen that OM bisects AB, and so OM ▲ AB

Similarly, ON bisects CD, and so ON \perp CD.

It is known that AB = CD. So,

$$AM = ND - (i)$$
 and

$$MB = CN - (ii)$$

Now, triangles ΔOME and ΔONE are similar by RHS congruency, since

 \angle OME = \angle ONE (They are perpendiculars.)

OE = OE (It is the common side.)

OM = ON (AB and CD are equal, and so they are equidistant from the centre.)

 $\therefore \triangle OME \cong \triangle ONE$

$$ME = EN (by CPCT) - (iii)$$

Now, from equations (i) and (ii), we get

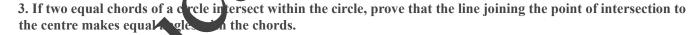
AM+ME = ND+EN

So, AE = ED

Now from equations (ii) and (iii), we get

MB-ME = CN-EN

So, EB = CE (Hence, proved)



Solution:

From the question, we show the following:

- (i) A and CD are 2 chords which are intersecting at point E.
- (ii) PQ is a diameter of the circle.
- (iii) AB = CD.

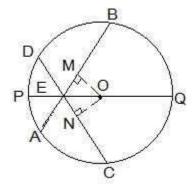
NCERT Solutions for Class 9 Maths Chapter 10 - Circles

Now, we will have to prove that $\angle BEQ = \angle CEQ$ For

this, the following construction has to be done.

Construction:

Draw two perpendiculars are drawn as OM \perp AB and ON \perp D. Now, join OE. The constructed diagram will look as follows:



Now, consider the triangles \triangle OEM and \triangle OEN.

Here,

- (i) OM = ON [The equal chords are always equidistant in in the centre.]
- (ii) OE = OE [It is the common side.]
- (iii) \angle OME = \angle ONE [These are the perpendicula \searrow]

So, by RHS congruency criterion, 1 OF ≅ ∆OEN.

Hence, by the CPCT rule, $\angle NEO = \angle NEO = AUDIO = AUD$

 $\therefore \angle BEQ = \angle CEQ$ (Hence, rove.)

4. If a line of terse to wo concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD (see Fig. 10.25).

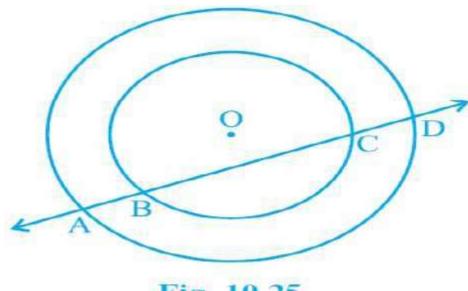


Fig. 10.25

Solution:

The given image is as follows:

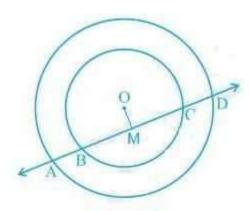


Fig. 10.25

First, draw a line regine at from O to AD, such that OM \perp AD.

So, now QM is pisect. AD since $QM \perp AD$.

Therefore AM = MD - (i)

Also, sinc $\mathbb{C}M \perp BC$, OM bisects BC.

Therefore, BM = MC - (ii)

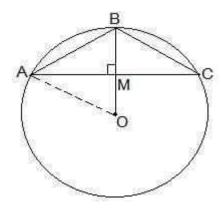
From equation (i) and equation (ii),

AM-BM = MD-MC

 $\therefore AB = CD$

5. Three girls, Reshma, Salma and Mandip, are playing a game by standing on a circle of radius 5m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, and Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6m each, what is the distance between Reshma and Mandip?

Solution:



Let the positions of Reshma, Salma and Mandip be represented. A, B ald C, respectively.

From the question, we know that AB = BC = 6cm

So, the radius of the circle, i.e., OA = 5cm

Now, draw a perpendicular BM \perp AC.

Since AB = BC, ABC can be considered a isosce is triangle. M is the mid-point of AC. BM is the perpendicular bisector of AC, and thus it passes through the centre of the circle. Now, let AM = y and

$$OM = x$$

So, BM will be
$$= (5-x)$$
.

By applying the P hago α theorem in Δ OAM, we get

$$OA^2 = OM^2 + AN$$

$$\Rightarrow 5^2 = \sqrt{y^2 - y^2}$$

Again, by applying the Pythagorean theorem in \triangle AMB,

$$AB^2 = BM^2 + AM^2$$

$$\Rightarrow$$
 6² = (5-x)²+y² — (ii)

Subtracting equation (i) from equation (ii), we get

$$36-25 = (5-x)^2 + y^2 - x^2 - y^2$$

Now, solving this equation, we get the value of x as x

= 7/5

Substituting the value of x in equation (i), we get

$$y^2 + (49/25) = 25$$

$$\Rightarrow$$
 y² = 25 - (49/25)

Solving it, we get the value of y as

y = 24/5 Thus,

 $AC = 2 \times AM$

 $= 2 \times y$

 $= 2 \times (24/5) \text{ m}$

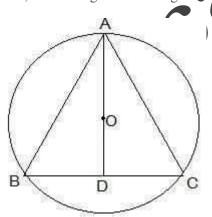
AC = 9.6 m

So, the distance between Reshma and Mandip is 9.6 m.

6. A circular park of radius 20m is situated in a concey. Three boys, Ankur, Syed and David, are sitting at equal distances on its boundary, each having stoy te ephon in his hands to talk to each other. Find the length of the string of each phone.

Solution:

First, draw a diagram according to be given statements. The diagram will look as follows:



NCERT Solutions for Class 9 Maths Chapter 10 - Circles

Here, the positions of Ankur, Syed and David are represented as A, B and C, respectively. Since they are sitting at equal distances, the triangle ABC will form an equilateral triangle.

AD \perp BC is drawn. Now, AD is the median of \triangle ABC, and it passes through the centre O.

Also, O is the centroid of the \triangle ABC. OA is the radius of the triangle.

OA = 2/3 AD

Let the side of a triangle a metres, then BD = a/2 m.

Applying Pythagoras' theorem in \triangle ABD,

 $AB^2 = BD^2 + AD^2$

 \Rightarrow AD² = AB² -BD²

 \Rightarrow AD² = a² - (a/2)²

 \Rightarrow AD² = 3a²/4

 \Rightarrow AD = $\sqrt{3}$ a/2

OA = 2/3 AD

 $20 \text{ m} = 2/3 \times \sqrt{3} \text{ a}/2 \text{ a}$

 $= 20\sqrt{3} \text{ m}$

So, the length of the string of the toy is $20\sqrt{3}$

EXERCISE: 10.5

1. In Fig. 10.36, A, B and C are three points on a circle with centre O, such that 2100^{-3} 30° and $\angle AOB = 60^{\circ}$. If D is a point on the circle other than the arc ABC, find $\angle ADC$.

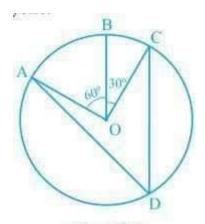


Fig. 10.36

Solution:

It is given that,

 $\angle AOC = \angle AOB + \angle BOC$

So, $\angle AOC = 60^{\circ}$ 0°

: /AO = 90°

It is K which and an angle which is subtended by an arc at the centre of the circle is double the angle subtended by that arc at any point on the remaining part of the circle.

So,

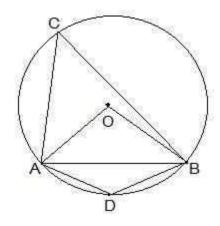
 $\angle ADC = (\frac{1}{2})\angle AOC$

NCERT Solutions for Class 9 Maths Chapter 10 - Circles

$$=(1/2)\times 90^{\circ}=45^{\circ}$$

2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Solution:



Here, the chord AB is equal to the radius of the circle. In the above diag in, Ox and OB are the two radii of the circle.

Now, consider the $\triangle OAB$. Here,

$$AB = OA = OB = radius of the circle$$

So, it can be said that $\triangle OAB$ has all equal sides, and that it is a equilateral triangle.

$$\therefore \angle AOC = 60^{\circ}$$

And,
$$\angle ACB = \frac{1}{2} \angle AOB$$

So,
$$\angle ACB = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$$

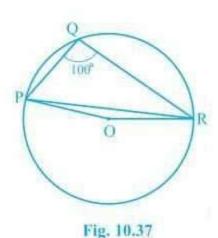
Now, since ACBD is a cyclic quedrila era!

 $\angle ADB + \angle ACB = 180^{\circ}$ (They be opposite angles of a cyclic quadrilateral)

So,
$$\angle ADB = 12^{\circ}-36^{\circ}-150^{\circ}$$

So, the angle subtended by the chord at a point on the minor arc and also at a point on the major arc is 150° and 30°, respectively.

3. In P 10.37 \angle PQR = 100°, where P, Q and R are points on a circle with centre O. Find \angle OPR.



Solution:

Since the angle which is subtended by an arc at the centre of the circle is double the angle subtended by that arc at any point on the remaining part of the circle.

So, the reflex $\angle POR = 2 \times \angle PQR$

We know the values of angle PQR as 100° .

So,
$$\angle POR = 2 \times 100^{\circ} = 200^{\circ}$$

$$\therefore$$
 ∠POR = 360°-200° = 160°

Now, in $\triangle OPR$,

OP and OR are the radii of the circle.

So,
$$OP = OR$$

Also,
$$\angle OPR = \angle ORP$$

Now, we know the sum of the angles in a triangle is equal to 180 degrees.

So,

∠POR-ZOPR+ QRP- 180°

∠ÓPR → OPR = 180°-160°

As ∠OPR ₹ ∠ORP

 $2\angle OPR = 20^{\circ}$

Thus, $\angle OPR = 10^{\circ}$

4. In Fig. 10.38, $\angle ABC = 69^{\circ}$, $\angle ACB = 31^{\circ}$, find $\angle BDC$.

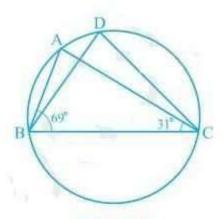


Fig. 10.38

Solution:

We know that angles in the segment of the circle are equal, so,

$$\angle BAC = \angle BDC$$

Now. in the \triangle ABC, the sum of all the interior angles will be 180

So,
$$\angle ABC + \angle BAC + \angle ACB = 180^{\circ}$$

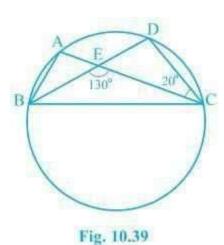
Now, by putting the values,

$$\angle BAC = 180^{\circ}-69^{\circ}-31^{\circ}$$

So,
$$\angle BAC = 80^{\circ}$$

$$\therefore \angle BDC = 80^{\circ}$$

5. In Fig. 10.39, A, B, C and D are four points on a circle. AC and BD intersect at a point E, such that \angle BEC = 130° and \angle ECD = 26. Find \triangle C.



Solution:

We know that the angles in the segment of the circle are equal.

So,

 \angle BAC = \angle CDE

Now, by using the exterior angles property of the triangle,

In \triangle CDE, we get

 \angle CEB = \angle CDE+ \angle DCE

We know that \angle DCE is equal to 20°.

So, \angle CDE = 110°

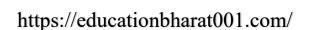
∠ BAC and ∠ CDE are equal

 \therefore \angle BAC = 110°

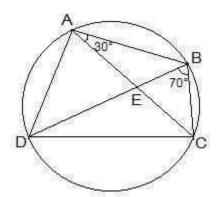
6. ABCD is a cyclic quadrila gral, hose diagonals intersect at point E. If \angle DBC = 70°, \angle BAC is 30°, find \angle BCD. Further, if AB = BC, find \angle ECD.

Solution:

Consider the followin, diagram.



NCERT Solutions for Class 9 Maths Chapter 10 - Circles



Consider the chord CD.

We know that angles in the same segment are equal.

So,
$$\angle$$
 CBD = \angle CAD

$$\therefore$$
 \angle CAD = 70°

Now, ∠ BAD will be equal to the sum of angles BAC and CAD.

So,
$$\angle$$
 BAD = \angle BAC+ \angle CAD

$$\therefore$$
 \angle BAD = 100°

We know that the opposite angles of a cyclic quad flate. Sum up to 180 degrees.

So,

$$\angle$$
 BCD+ \angle BAD = 180°

It is known that \angle BAD = 100°

So,
$$\angle$$
 BCD = 80°

Now, consider $\triangle \triangle \triangle \triangle C$

Here, it is given that R = BC

Also \angle BO = \angle BO (They are the angles opposite to equal sides of a triangle)

∠ BCA = 10° ciso,

$$\angle BCD = 80^{\circ}$$

$$\angle$$
 BCA + \angle ACD = 80°

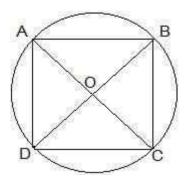
NCERT Solutions for Class 9 Maths Chapter 10 - Circles

Thus, \angle ACD = 50° and \angle ECD = 50°

7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Solution:

Draw a cyclic quadrilateral ABCD inside a circle with centre O, such that its diagonal AC and BD are two dians ters of the circle.



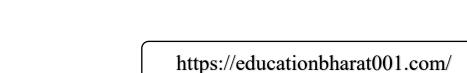
We know that the angles in the semi-circle are equal.

So,
$$\angle$$
 ABC = \angle BCD = \angle CDA = \angle DAB = 90°

So, as each internal angle is 90°, it can be said that the quant teral ABCD is a rectangle.

8. If the non-parallel sides of a trapezium are equal protect that it is cyclic.

Solution:



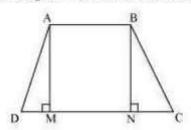
Construction:

Consider a trapezium ABCD with AB | |CD and BC = AD.

Draw AM _ CD and BN _ CD

In ΔAMD and ΔBNC,

The diagram will look as follows:



in ΔAMD and ΔBNC,

AD = BC (Given)

∠AMD = ∠BNC (By construction, each is 90°)

AM = BM (Perpendicular distance between two parallel lines is same)

 \triangle AMD \cong \triangle BNC (RHS congruence rule)

 $\angle ADC = \angle BCD(CPCT) ... (1)$

∠BAD and ∠ADC are on the same side of transversal AD.

∠BAD + ∠ADC = 180°

... (2)

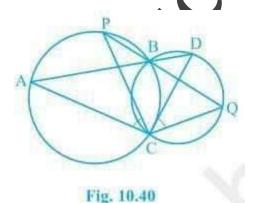
∠BAD + ∠BCD = 180°

[Using equation (1)]

This equation shows that the opposite angles are supplementary.

Therefore, ABCD is a cyclic quadrilateral.

9. Two circles intersect at two points, B, and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, P and P, , respectively (see Fig. 10.40). Prove that ∠ACP = ∠QCD.



Solution:

Construction:

Join the chords AP and DQ.

For chord AP, we know that angles in the same segment are equal.

So,
$$\angle$$
 PBA = \angle ACP — (i)

Similarly, for chord DQ,

$$\angle DBQ = \angle QCD - (ii)$$

It is known that ABD and PBQ are two line segments which are intersecting at B.

At B, the vertically opposite angles will be equal.

$$\therefore$$
 ∠ PBA = ∠ DBQ — (iii)

From equation (i), equation (ii) and equation (iii), we get

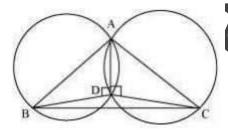
$$\angle ACP = \angle QCD$$

10. If circles are drawn taking two sides of a triangle as dial, ters, prove that the point of intersection of these circles lies on the third side.

Solution:

First, draw a triangle ABC and then two ciples having di meters of AB and AC, respectively.

We will have to now prove that D lies of PC an BDC is a straight line.



Proof.

We know that angles in the semi-circle are equal.

So,
$$\angle ADB = \angle ADC = 90^{\circ}$$

Hence, $\angle ADB + \angle ADC = 180^{\circ}$

∴ ∠ BDC is a straight line.

NCERT Solutions for Class 9 Maths Chapter 10 - Circles

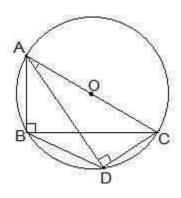
So, it can be said that D lies on the line BC.

11. ABC and ADC are two right triangles with common hypotenuse AC. Prove that \angle CAD = \angle CBD.

Solution:

We know that AC is the common hypotenuse and $\angle B = \angle D = 90^{\circ}$.

Now, it has to be proven that $\angle CAD = \angle CBD$



Since ∠ ABC and ∠ ADC are 90°, it can be said that they lie it a ser peircle

So, triangles ABC and ADC are in the semi-circle, and the point. B, I and D are concyclic.

Hence, CD is the chord of the circle with centre O.

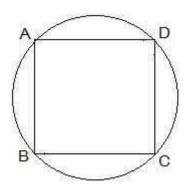
We know that the angles which are in the same segment of the circle are equal.

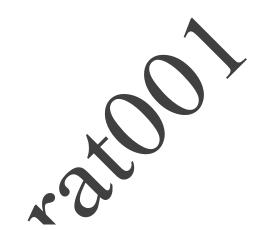
$$\therefore$$
 \angle CAD = \angle CBD

12. Prove that a cyclic parallelogram is a vectargle.

Solution:

It is given that ABCD is a cyclic par llelogram, and we will have to prove that ABCD is a rectangle.





Proof:

Let ABCD be a cyclic parallelogram.

$$\angle A + \angle C = 180^{\circ}$$
 (Opposite angle of cyclic quadrilateral) ... (1)

We know that opposite angles of a parallelogram are equal

$$\angle A = \angle C$$
 and $\angle B = \angle D$

From equation (1)

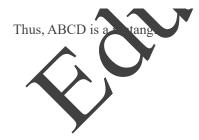
$$\angle A + \angle C = 180^{\circ}$$

$$\angle A + \angle A = 180^{\circ}$$

$$2 \angle A = 180^{\circ}$$

$$\angle A = 90^{\circ}$$

Parallelogram ABCD has one of its interior angles as 90°.



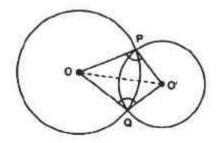
EXERCISE: 10.6

(PAGE NO: 186)

Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.

Solution:

Consider the following diagram.



In ΔPOO' and ΔQOO'

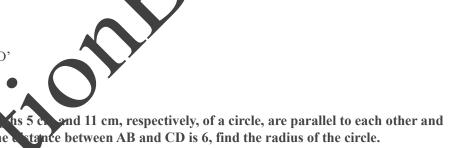
(Radius of circle 1) OP = OO

O'P = O'Q(Radius of circle 2)

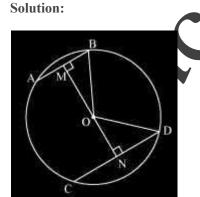
OO' = OO'(Common arm)

So, by SSS congruency, $\Delta POO' \cong \Delta QOO'$

Thus, $\angle OPO' = \angle OQO'$ (proved).



Two chords AB and CD of lengths 5 c. 2. are on opposite sides of its centre. If the



Here, OM \perp AB and ON \perp CD are drawn, and OB and OD are joined.

We know that AB bisects BM as the perpendicular from the centre bisects the chord.

Since AB = 5 so,

$$BM = AB/2 = 5/2$$

Similarly, ND = CD/2 = 11/2

Now, let ON be x.

So,
$$OM = 6-x$$
.

Consider ΔMOB,

$$OB^2 = OM^2 + MB^2$$

Or,

$$OB^2 = 36 + x^2 - 12x + \frac{25}{4}$$

Consider ΔNOD,

$$OD^2 = ON^2 + ND^2$$

Or

$$OD^2 = x^2 + \frac{121}{4}$$

We know, OB = OD (radii)

From equation 1 and equation 2, we get

$$36 + x^2 - 12x + \frac{25}{4} = x^2 + \frac{121}{4}$$

$$12x = 36 + \frac{25}{4} - \frac{121}{4}$$

$$=\frac{144+25-12}{4}$$

$$12x = \frac{48}{4} = 12$$

$$x = 1$$

Now, from equation (2), we have,

$$OD^2 = 1^2 + (121/4)$$

... (1)

•

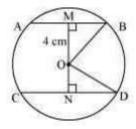
NCERT Solutions for Class 9 Maths Chapter 10 - Circles

Or OD =
$$(5/2) \times \sqrt{5}$$
 cm

3. The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at a distance 4 cm from the centre, what is the distance of the other chord from the centre?

Solution:

Consider the following diagram.



Here, AB and CD are 2 parallel chords. Now, join OB and OD.

Distance of smaller chord AB from the centre of the circle = 4 cm

So, OM = 4 cm

MB = AB/2 = 3 cm

Consider ΔOMB.

 $OB^2 = OM^2 + MB^2$

Or, OB = 5cm

Now, consider \triangle OND.

OB = OD = 5 (Since they are the radii)

ND = CD/2 = 4 cm

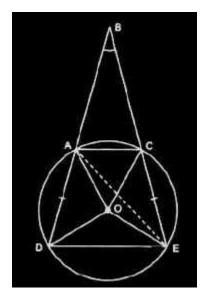
Now, $OD^2 = ON^2 + ND^2$

Or, ON = 3 cm

4. Let the vertex for angle ABC be located outside a circle, and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is equal to half the difference of the angles subtended by the chords AC and CE at the centre.

Solution:

Consider the diagram.



Here AD = CE

We know any exterior angle of a triangle is equal to the sum of interior prosecutions.

So,

DE subtends ∠DOE at the centre and ∠DAE in the remaining out of the circle.

So,

Now, from equations (i), (ii), and (i), we have

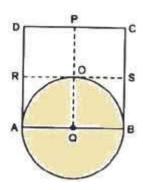
$$(\frac{1}{2})\angle DOE = \angle ABC + (\frac{1}{2})\angle AC$$

Or,
$$\angle ABC = (\frac{1}{2})[\angle DOE-\angle A^{*}C]$$
 (Hence, proved)

5. Prove that the casele drawn with any side of a rhombus as diameter passes through the point of intersection of its diagonals.

Solution:

NCERT Solutions for Class 9 Maths Chapter 10 - Circles



To prove: A circle drawn with Q as the centre will pass through A, B and O (i.e., QA = QB = QQ)

all sides of a rhombus are equal,

$$AB = DC$$

Now, multiply (½) on both sides.

$$(\frac{1}{2})AB = (\frac{1}{2})DC$$

So,
$$AQ = DP$$

$$BQ = DP$$

Since Q is the midpoint of AB,

$$AQ = BQ$$

Similarly,

$$RA = SB$$

Again, as PQ is drawn parallel to AO,

$$RA = QO$$

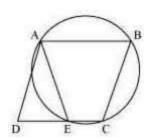
Now, as AQ = BQ and RA = QC e get

$$QA = QB = QO$$
 (received)

6. ABCO is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE AD.

Solution

NCERT Solutions for Class 9 Maths Chapter 10 - Circles



Here, ABCE is a cyclic quadrilateral. In a cyclic quadrilateral, the sum of the opposite angles is 180

So, $\angle AEC + \angle CBA = 180^{\circ}$

As ∠AEC and ∠AED are linear pairs,

 $\angle AEC + \angle AED = 180^{\circ}$

Or, $\angle AED = \angle CBA \dots (1)$

We know in a parallelogram, opposite angles are equal.

So, $\angle ADE = \angle CBA \dots (2)$

Now, from equations (1) and (2), we get

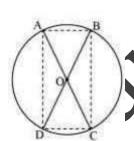
 $\angle AED = \angle ADE$

Now, AD and AE are angles opposite to equal sides of a thingle

 \therefore AD = AE (proved)

7. AC and BD are chords of a circle which bis at each other. Prove that (i) AC and BD are diameters; (ii) ABCD is a rectangle.

Solution:



Here, chore AB and CD intersect each other at O.

Consider $\triangle AOB$ and $\triangle COD$.

 \angle AOB = \angle COD (They are vertically opposite angles.)

NCERT Solutions for Class 9 Maths Chapter 10 - Circles

OB = OD (Given in the question.)

OA = OC (Given in the question.)

So, by SAS congruency, $\triangle AOB \cong \triangle COD$

Also, AB = CD (By CPCT)

Similarly, $\triangle AOD \cong \triangle COB$

Or, AD = CB (By CPCT)

In quadrilateral ACBD, opposite sides are equal.

So, ACBD is a parallelogram.

We know that opposite angles of a parallelogram are equal.

So, $\angle A = \angle C$

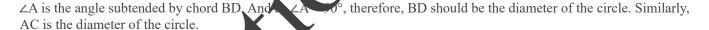
Also, as ABCD is a cyclic quadrilateral,

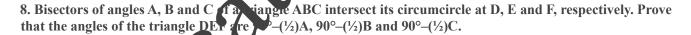
 $\angle A + \angle C = 180^{\circ}$

 $\Rightarrow \angle A + \angle A = 180^{\circ}$

Or, $\angle A = 90^{\circ}$

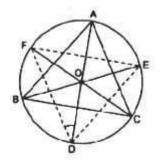
As ACBD is a parallelogram and one of its interior angle is 0° , so, it is a rectangle.





Solution:

Consider the following diagn



NCERT Solutions for Class 9 Maths Chapter 10 - Circles

Here, ABC is inscribed in a circle with centre O, and the bisectors of $\angle A$, $\angle B$ and $\angle C$ intersect the circumcircle at D, E and F, respectively.

Now, join DE, EF and FD.

As angles in the same segment are equal, so,

By adding equations (i) and (ii), we get

$$\angle FDA + \angle EDA = \angle FCA + \angle EBA$$

Or,
$$\angle$$
FDE = \angle FCA+ \angle EBA = $(\frac{1}{2})\angle$ C+ $(\frac{1}{2})\angle$ B

We know, $\angle A + \angle B + \angle C = 180^{\circ}$

So,
$$\angle FDE = (\frac{1}{2})[\angle C + \angle B] = (\frac{1}{2})[180^{\circ} - \angle A]$$

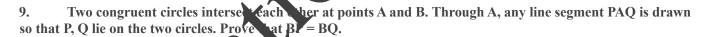
$$\angle FDE = [90-(\angle A/2)]$$

In a similar way,

$$\angle$$
FED = [90° -(\angle B/2)] °

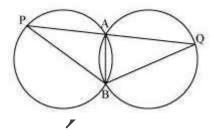
And,

$$\angle EFD = [90^{\circ} - (\angle C/2)]^{\circ}$$



Solution:

The diagram will be



Here, $\angle APB = \angle AQB$ (as AB is the common chord in both the congruent circles.)

Now, consider $\triangle BPQ$.

NCERT Solutions for Class 9 Maths Chapter 10 - Circles

$$\angle APB = \angle AQB$$

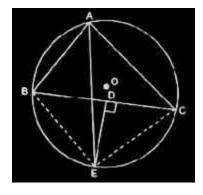
So, the angles are opposite to equal sides of a triangle.

$$\therefore BQ = BP$$

10. In any triangle ABC, if the angle bisector of ∠A and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC.

Solution:

Consider this diagram.



Here, join BE and CE.

Now, since AE is the bisector of $\angle BAC$,

Also,

∴arc BE = arc EC

This implies chord BE = chord EC

Now, consider triangles ARDI and ICDE

DE = DE (It is the common side)

BD = CP (It's give in the question)

BE (Alteady proved)

So, by SS. Ingruency, $\triangle BDE \cong \triangle CDE$.

Thus, ∴∠BDE = ∠CDE

We know, $\angle BDE = \angle CDE = 180^{\circ}$

NCERT Solutions for Class 9 Maths Chapter 10 - Circles

Or, $\angle BDE = \angle CDE = 90^{\circ}$

∴ DE \bot BC (Hence, proved).

